Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks

•Convolution Neural Networks are used to phenotype epicuticular waxes.•Light separation methods are used which increase the accuracy of wax detection.•Monitoring of berry bloom with a fast, objective and sensor-based approach. The epicuticular wax represents the outer layer of the grape berry skin a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2019-01, Vol.156, p.263-274
Hauptverfasser: Barré, Pierre, Herzog, Katja, Höfle, Rebecca, Hullin, Matthias B., Töpfer, Reinhard, Steinhage, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue
container_start_page 263
container_title Computers and electronics in agriculture
container_volume 156
creator Barré, Pierre
Herzog, Katja
Höfle, Rebecca
Hullin, Matthias B.
Töpfer, Reinhard
Steinhage, Volker
description •Convolution Neural Networks are used to phenotype epicuticular waxes.•Light separation methods are used which increase the accuracy of wax detection.•Monitoring of berry bloom with a fast, objective and sensor-based approach. The epicuticular wax represents the outer layer of the grape berry skin and is known as trait that is significantly correlated to resilience towards Botrytis bunch rot. Traditionally this trait is classified using the OIV descriptor 227 (berry bloom) in a time consuming way resulting in subjective and error-prone phenotypic data. In the present study an objective, fast and sensor-based approach was developed to monitor epicuticular waxes. From the technical point-of-view, it is known that the measurement of different illumination components conveys important information about observed object surfaces. A Light-Separation-Lab is proposed in order to capture illumination-separated images of grapevine berries for phenotyping the distribution of epicuticular waxes (berry bloom). For image analysis, an efficient convolutional neural network approach is used to derive the uniformity and intactness of waxes on berries. Method validation over six grapevine cultivars shows accuracies up to 97.3%. In addition, electrical impedance of the cuticle and its epicuticular waxes (described as an indicator for the thickness of berry skin and its permeability) was correlated to the detected proportion of waxes with r = 0.76. This novel, fast and non-invasive phenotyping approach facilitates enlarged screenings within grapevine breeding material and genetic repositories regarding berry bloom characteristics and its impact on resilience towards Botrytis bunch rot.
doi_str_mv 10.1016/j.compag.2018.11.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2177123953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169918311190</els_id><sourcerecordid>2177123953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7859b55cadcad4040c035e1fa571469190755cd59081774e4133d8a381231f603</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjME_4BCJc0vctEt7QZomvqRJXOAcZam7ZXRNSdKN_XtSxhnJlmX7vSf7EXILLAUGs_ttqu2uV-s0Y1CmACmD7IxMoBRZIoCJczKJsDKBWVVdkivvtyz2VSkm5Dgfgt2pgDXtN9jZcOxNt6a2odgbPYSYrXL0oL7Rj9O1Uz3uTYd0hc6ZOBz8SGjNehOox145FYztqOpqqm23t-0w9qqlHQ7ut4SDdZ_-mlw0qvV481en5OPp8X3xkizfnl8X82WiOc9DIsqiWhWFVnWMnOVMM14gNKoQkM8qqJiI27qoWAlC5JgD53WpeAkZh2bG-JTcnXR7Z78G9EFu7eDiQV5mkRFhVcEjKj-htLPeO2xk78xOuaMEJkeT5VaeTJajyRJARpMj7eFEw_jB3qCTXhvsNNbGoQ6ytuZ_gR9LZYlF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177123953</pqid></control><display><type>article</type><title>Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Barré, Pierre ; Herzog, Katja ; Höfle, Rebecca ; Hullin, Matthias B. ; Töpfer, Reinhard ; Steinhage, Volker</creator><creatorcontrib>Barré, Pierre ; Herzog, Katja ; Höfle, Rebecca ; Hullin, Matthias B. ; Töpfer, Reinhard ; Steinhage, Volker</creatorcontrib><description>•Convolution Neural Networks are used to phenotype epicuticular waxes.•Light separation methods are used which increase the accuracy of wax detection.•Monitoring of berry bloom with a fast, objective and sensor-based approach. The epicuticular wax represents the outer layer of the grape berry skin and is known as trait that is significantly correlated to resilience towards Botrytis bunch rot. Traditionally this trait is classified using the OIV descriptor 227 (berry bloom) in a time consuming way resulting in subjective and error-prone phenotypic data. In the present study an objective, fast and sensor-based approach was developed to monitor epicuticular waxes. From the technical point-of-view, it is known that the measurement of different illumination components conveys important information about observed object surfaces. A Light-Separation-Lab is proposed in order to capture illumination-separated images of grapevine berries for phenotyping the distribution of epicuticular waxes (berry bloom). For image analysis, an efficient convolutional neural network approach is used to derive the uniformity and intactness of waxes on berries. Method validation over six grapevine cultivars shows accuracies up to 97.3%. In addition, electrical impedance of the cuticle and its epicuticular waxes (described as an indicator for the thickness of berry skin and its permeability) was correlated to the detected proportion of waxes with r = 0.76. This novel, fast and non-invasive phenotyping approach facilitates enlarged screenings within grapevine breeding material and genetic repositories regarding berry bloom characteristics and its impact on resilience towards Botrytis bunch rot.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2018.11.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial neural networks ; Berries ; Berry bloom ; Botrytis cinerea ; Convolutional Neural Networks (CNN) ; Cuticles ; Cuticular wax ; Direct and global illumination ; Electrical impedance ; Illumination ; Image analysis ; Light ; Luminance distribution ; Neural networks ; Repositories ; Resilience ; Separation ; Vitis vinifera</subject><ispartof>Computers and electronics in agriculture, 2019-01, Vol.156, p.263-274</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7859b55cadcad4040c035e1fa571469190755cd59081774e4133d8a381231f603</citedby><cites>FETCH-LOGICAL-c334t-7859b55cadcad4040c035e1fa571469190755cd59081774e4133d8a381231f603</cites><orcidid>0000-0003-1569-2495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168169918311190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Barré, Pierre</creatorcontrib><creatorcontrib>Herzog, Katja</creatorcontrib><creatorcontrib>Höfle, Rebecca</creatorcontrib><creatorcontrib>Hullin, Matthias B.</creatorcontrib><creatorcontrib>Töpfer, Reinhard</creatorcontrib><creatorcontrib>Steinhage, Volker</creatorcontrib><title>Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks</title><title>Computers and electronics in agriculture</title><description>•Convolution Neural Networks are used to phenotype epicuticular waxes.•Light separation methods are used which increase the accuracy of wax detection.•Monitoring of berry bloom with a fast, objective and sensor-based approach. The epicuticular wax represents the outer layer of the grape berry skin and is known as trait that is significantly correlated to resilience towards Botrytis bunch rot. Traditionally this trait is classified using the OIV descriptor 227 (berry bloom) in a time consuming way resulting in subjective and error-prone phenotypic data. In the present study an objective, fast and sensor-based approach was developed to monitor epicuticular waxes. From the technical point-of-view, it is known that the measurement of different illumination components conveys important information about observed object surfaces. A Light-Separation-Lab is proposed in order to capture illumination-separated images of grapevine berries for phenotyping the distribution of epicuticular waxes (berry bloom). For image analysis, an efficient convolutional neural network approach is used to derive the uniformity and intactness of waxes on berries. Method validation over six grapevine cultivars shows accuracies up to 97.3%. In addition, electrical impedance of the cuticle and its epicuticular waxes (described as an indicator for the thickness of berry skin and its permeability) was correlated to the detected proportion of waxes with r = 0.76. This novel, fast and non-invasive phenotyping approach facilitates enlarged screenings within grapevine breeding material and genetic repositories regarding berry bloom characteristics and its impact on resilience towards Botrytis bunch rot.</description><subject>Artificial neural networks</subject><subject>Berries</subject><subject>Berry bloom</subject><subject>Botrytis cinerea</subject><subject>Convolutional Neural Networks (CNN)</subject><subject>Cuticles</subject><subject>Cuticular wax</subject><subject>Direct and global illumination</subject><subject>Electrical impedance</subject><subject>Illumination</subject><subject>Image analysis</subject><subject>Light</subject><subject>Luminance distribution</subject><subject>Neural networks</subject><subject>Repositories</subject><subject>Resilience</subject><subject>Separation</subject><subject>Vitis vinifera</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjME_4BCJc0vctEt7QZomvqRJXOAcZam7ZXRNSdKN_XtSxhnJlmX7vSf7EXILLAUGs_ttqu2uV-s0Y1CmACmD7IxMoBRZIoCJczKJsDKBWVVdkivvtyz2VSkm5Dgfgt2pgDXtN9jZcOxNt6a2odgbPYSYrXL0oL7Rj9O1Uz3uTYd0hc6ZOBz8SGjNehOox145FYztqOpqqm23t-0w9qqlHQ7ut4SDdZ_-mlw0qvV481en5OPp8X3xkizfnl8X82WiOc9DIsqiWhWFVnWMnOVMM14gNKoQkM8qqJiI27qoWAlC5JgD53WpeAkZh2bG-JTcnXR7Z78G9EFu7eDiQV5mkRFhVcEjKj-htLPeO2xk78xOuaMEJkeT5VaeTJajyRJARpMj7eFEw_jB3qCTXhvsNNbGoQ6ytuZ_gR9LZYlF</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Barré, Pierre</creator><creator>Herzog, Katja</creator><creator>Höfle, Rebecca</creator><creator>Hullin, Matthias B.</creator><creator>Töpfer, Reinhard</creator><creator>Steinhage, Volker</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1569-2495</orcidid></search><sort><creationdate>201901</creationdate><title>Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks</title><author>Barré, Pierre ; Herzog, Katja ; Höfle, Rebecca ; Hullin, Matthias B. ; Töpfer, Reinhard ; Steinhage, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7859b55cadcad4040c035e1fa571469190755cd59081774e4133d8a381231f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Berries</topic><topic>Berry bloom</topic><topic>Botrytis cinerea</topic><topic>Convolutional Neural Networks (CNN)</topic><topic>Cuticles</topic><topic>Cuticular wax</topic><topic>Direct and global illumination</topic><topic>Electrical impedance</topic><topic>Illumination</topic><topic>Image analysis</topic><topic>Light</topic><topic>Luminance distribution</topic><topic>Neural networks</topic><topic>Repositories</topic><topic>Resilience</topic><topic>Separation</topic><topic>Vitis vinifera</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barré, Pierre</creatorcontrib><creatorcontrib>Herzog, Katja</creatorcontrib><creatorcontrib>Höfle, Rebecca</creatorcontrib><creatorcontrib>Hullin, Matthias B.</creatorcontrib><creatorcontrib>Töpfer, Reinhard</creatorcontrib><creatorcontrib>Steinhage, Volker</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barré, Pierre</au><au>Herzog, Katja</au><au>Höfle, Rebecca</au><au>Hullin, Matthias B.</au><au>Töpfer, Reinhard</au><au>Steinhage, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2019-01</date><risdate>2019</risdate><volume>156</volume><spage>263</spage><epage>274</epage><pages>263-274</pages><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Convolution Neural Networks are used to phenotype epicuticular waxes.•Light separation methods are used which increase the accuracy of wax detection.•Monitoring of berry bloom with a fast, objective and sensor-based approach. The epicuticular wax represents the outer layer of the grape berry skin and is known as trait that is significantly correlated to resilience towards Botrytis bunch rot. Traditionally this trait is classified using the OIV descriptor 227 (berry bloom) in a time consuming way resulting in subjective and error-prone phenotypic data. In the present study an objective, fast and sensor-based approach was developed to monitor epicuticular waxes. From the technical point-of-view, it is known that the measurement of different illumination components conveys important information about observed object surfaces. A Light-Separation-Lab is proposed in order to capture illumination-separated images of grapevine berries for phenotyping the distribution of epicuticular waxes (berry bloom). For image analysis, an efficient convolutional neural network approach is used to derive the uniformity and intactness of waxes on berries. Method validation over six grapevine cultivars shows accuracies up to 97.3%. In addition, electrical impedance of the cuticle and its epicuticular waxes (described as an indicator for the thickness of berry skin and its permeability) was correlated to the detected proportion of waxes with r = 0.76. This novel, fast and non-invasive phenotyping approach facilitates enlarged screenings within grapevine breeding material and genetic repositories regarding berry bloom characteristics and its impact on resilience towards Botrytis bunch rot.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2018.11.012</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1569-2495</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2019-01, Vol.156, p.263-274
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2177123953
source Elsevier ScienceDirect Journals
subjects Artificial neural networks
Berries
Berry bloom
Botrytis cinerea
Convolutional Neural Networks (CNN)
Cuticles
Cuticular wax
Direct and global illumination
Electrical impedance
Illumination
Image analysis
Light
Luminance distribution
Neural networks
Repositories
Resilience
Separation
Vitis vinifera
title Automated phenotyping of epicuticular waxes of grapevine berries using light separation and convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20phenotyping%20of%20epicuticular%20waxes%20of%20grapevine%20berries%20using%20light%20separation%20and%20convolutional%20neural%20networks&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Barr%C3%A9,%20Pierre&rft.date=2019-01&rft.volume=156&rft.spage=263&rft.epage=274&rft.pages=263-274&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2018.11.012&rft_dat=%3Cproquest_cross%3E2177123953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177123953&rft_id=info:pmid/&rft_els_id=S0168169918311190&rfr_iscdi=true