Influential users in Twitter: detection and evolution analysis
In this paper, we study how to detect the most influential users in the microblogging social network platform Twitter and their evolution over time. To this aim, we consider the Dynamic Retweet Graph (DRG) proposed in Amati et al. ( 2016 ) and partially analyzed in Amati et al. (IADIS Int J Comput S...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019-02, Vol.78 (3), p.3395-3407 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3407 |
---|---|
container_issue | 3 |
container_start_page | 3395 |
container_title | Multimedia tools and applications |
container_volume | 78 |
creator | Amati, Giambattista Angelini, Simone Gambosi, Giorgio Rossi, Gianluca Vocca, Paola |
description | In this paper, we study how to detect the most influential users in the microblogging social network platform Twitter and their evolution over time. To this aim, we consider the
Dynamic Retweet Graph (DRG)
proposed in Amati et al. (
2016
) and partially analyzed in Amati et al. (IADIS Int J Comput Sci Inform Syst, 11(2)
2016
), Amati et al. (
2016
). The model of the evolution of the Twitter social network is based here on the retweet relationship. In a DRGs, the last time a tweet has been retweeted we delete all the edges representing this tweet. In this way we model the decay of tweet life in the social platform. To detect the influential users, we consider the central nodes in the network with respect to the following centrality measures:
degree, closeness, betweenness and PageRank-centrality
. These measures have been widely studied in the static case and we analyze them on the sequence of DRG temporal graphs with special regard to the distribution of the
75
%
most central nodes. We derive the following results: (a) in all cases, applying the closeness measure results into many nodes with high centrality, so it is useless to detect influential users; (b) for all other measures, almost all nodes have null or very low centrality and (c) the number of vertices with significant centrality are often the same; (d) the above observations hold also for the cumulative retweet graph and, (e) central nodes in the sequence of DRG temporal graphs have high centrality in cumulative graph. |
doi_str_mv | 10.1007/s11042-018-6728-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2177063066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2177063066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ba79d3752b87e4ef03ed9d22e389c6615ec2a122e971dc0f2fb08a51573b28df3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9GZpE1SD4Is_llY8LKeQ9pMpUtt16RV9tvb0gVPnmYevPeY-TF2jXCLAPouIkIqOKDhSgvD0xO2wExLrrXA03GXBrjOAM_ZRYw7AFSZSBfsYd1WzUBtX7smGSKFmNRtsv2p-57CfeKpp7KvuzZxrU_ou2uGo3LNIdbxkp1Vrol0dZxL9v78tF298s3by3r1uOGlNKLnhdO5lzoThdGUUgWSfO6FIGnyUinMqBQOR51r9CVUoirAuGx6oBDGV3LJbubefei-Boq93XVDGI-IVqDWoCQoNbpwdpWhizFQZfeh_nThYBHshMnOmOyIyU6YbDpmxJyJo7f9oPDX_H_oF0Xiaj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177063066</pqid></control><display><type>article</type><title>Influential users in Twitter: detection and evolution analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Amati, Giambattista ; Angelini, Simone ; Gambosi, Giorgio ; Rossi, Gianluca ; Vocca, Paola</creator><creatorcontrib>Amati, Giambattista ; Angelini, Simone ; Gambosi, Giorgio ; Rossi, Gianluca ; Vocca, Paola</creatorcontrib><description>In this paper, we study how to detect the most influential users in the microblogging social network platform Twitter and their evolution over time. To this aim, we consider the
Dynamic Retweet Graph (DRG)
proposed in Amati et al. (
2016
) and partially analyzed in Amati et al. (IADIS Int J Comput Sci Inform Syst, 11(2)
2016
), Amati et al. (
2016
). The model of the evolution of the Twitter social network is based here on the retweet relationship. In a DRGs, the last time a tweet has been retweeted we delete all the edges representing this tweet. In this way we model the decay of tweet life in the social platform. To detect the influential users, we consider the central nodes in the network with respect to the following centrality measures:
degree, closeness, betweenness and PageRank-centrality
. These measures have been widely studied in the static case and we analyze them on the sequence of DRG temporal graphs with special regard to the distribution of the
75
%
most central nodes. We derive the following results: (a) in all cases, applying the closeness measure results into many nodes with high centrality, so it is useless to detect influential users; (b) for all other measures, almost all nodes have null or very low centrality and (c) the number of vertices with significant centrality are often the same; (d) the above observations hold also for the cumulative retweet graph and, (e) central nodes in the sequence of DRG temporal graphs have high centrality in cumulative graph.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6728-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Evolution ; Graphs ; Multimedia Information Systems ; Nodes ; Search engines ; Social networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2019-02, Vol.78 (3), p.3395-3407</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ba79d3752b87e4ef03ed9d22e389c6615ec2a122e971dc0f2fb08a51573b28df3</citedby><cites>FETCH-LOGICAL-c382t-ba79d3752b87e4ef03ed9d22e389c6615ec2a122e971dc0f2fb08a51573b28df3</cites><orcidid>0000-0002-8018-0309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-6728-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-6728-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Amati, Giambattista</creatorcontrib><creatorcontrib>Angelini, Simone</creatorcontrib><creatorcontrib>Gambosi, Giorgio</creatorcontrib><creatorcontrib>Rossi, Gianluca</creatorcontrib><creatorcontrib>Vocca, Paola</creatorcontrib><title>Influential users in Twitter: detection and evolution analysis</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we study how to detect the most influential users in the microblogging social network platform Twitter and their evolution over time. To this aim, we consider the
Dynamic Retweet Graph (DRG)
proposed in Amati et al. (
2016
) and partially analyzed in Amati et al. (IADIS Int J Comput Sci Inform Syst, 11(2)
2016
), Amati et al. (
2016
). The model of the evolution of the Twitter social network is based here on the retweet relationship. In a DRGs, the last time a tweet has been retweeted we delete all the edges representing this tweet. In this way we model the decay of tweet life in the social platform. To detect the influential users, we consider the central nodes in the network with respect to the following centrality measures:
degree, closeness, betweenness and PageRank-centrality
. These measures have been widely studied in the static case and we analyze them on the sequence of DRG temporal graphs with special regard to the distribution of the
75
%
most central nodes. We derive the following results: (a) in all cases, applying the closeness measure results into many nodes with high centrality, so it is useless to detect influential users; (b) for all other measures, almost all nodes have null or very low centrality and (c) the number of vertices with significant centrality are often the same; (d) the above observations hold also for the cumulative retweet graph and, (e) central nodes in the sequence of DRG temporal graphs have high centrality in cumulative graph.</description><subject>Apexes</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Evolution</subject><subject>Graphs</subject><subject>Multimedia Information Systems</subject><subject>Nodes</subject><subject>Search engines</subject><subject>Social networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9GZpE1SD4Is_llY8LKeQ9pMpUtt16RV9tvb0gVPnmYevPeY-TF2jXCLAPouIkIqOKDhSgvD0xO2wExLrrXA03GXBrjOAM_ZRYw7AFSZSBfsYd1WzUBtX7smGSKFmNRtsv2p-57CfeKpp7KvuzZxrU_ou2uGo3LNIdbxkp1Vrol0dZxL9v78tF298s3by3r1uOGlNKLnhdO5lzoThdGUUgWSfO6FIGnyUinMqBQOR51r9CVUoirAuGx6oBDGV3LJbubefei-Boq93XVDGI-IVqDWoCQoNbpwdpWhizFQZfeh_nThYBHshMnOmOyIyU6YbDpmxJyJo7f9oPDX_H_oF0Xiaj0</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Amati, Giambattista</creator><creator>Angelini, Simone</creator><creator>Gambosi, Giorgio</creator><creator>Rossi, Gianluca</creator><creator>Vocca, Paola</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8018-0309</orcidid></search><sort><creationdate>20190201</creationdate><title>Influential users in Twitter: detection and evolution analysis</title><author>Amati, Giambattista ; Angelini, Simone ; Gambosi, Giorgio ; Rossi, Gianluca ; Vocca, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ba79d3752b87e4ef03ed9d22e389c6615ec2a122e971dc0f2fb08a51573b28df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Evolution</topic><topic>Graphs</topic><topic>Multimedia Information Systems</topic><topic>Nodes</topic><topic>Search engines</topic><topic>Social networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amati, Giambattista</creatorcontrib><creatorcontrib>Angelini, Simone</creatorcontrib><creatorcontrib>Gambosi, Giorgio</creatorcontrib><creatorcontrib>Rossi, Gianluca</creatorcontrib><creatorcontrib>Vocca, Paola</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amati, Giambattista</au><au>Angelini, Simone</au><au>Gambosi, Giorgio</au><au>Rossi, Gianluca</au><au>Vocca, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influential users in Twitter: detection and evolution analysis</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>78</volume><issue>3</issue><spage>3395</spage><epage>3407</epage><pages>3395-3407</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we study how to detect the most influential users in the microblogging social network platform Twitter and their evolution over time. To this aim, we consider the
Dynamic Retweet Graph (DRG)
proposed in Amati et al. (
2016
) and partially analyzed in Amati et al. (IADIS Int J Comput Sci Inform Syst, 11(2)
2016
), Amati et al. (
2016
). The model of the evolution of the Twitter social network is based here on the retweet relationship. In a DRGs, the last time a tweet has been retweeted we delete all the edges representing this tweet. In this way we model the decay of tweet life in the social platform. To detect the influential users, we consider the central nodes in the network with respect to the following centrality measures:
degree, closeness, betweenness and PageRank-centrality
. These measures have been widely studied in the static case and we analyze them on the sequence of DRG temporal graphs with special regard to the distribution of the
75
%
most central nodes. We derive the following results: (a) in all cases, applying the closeness measure results into many nodes with high centrality, so it is useless to detect influential users; (b) for all other measures, almost all nodes have null or very low centrality and (c) the number of vertices with significant centrality are often the same; (d) the above observations hold also for the cumulative retweet graph and, (e) central nodes in the sequence of DRG temporal graphs have high centrality in cumulative graph.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6728-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8018-0309</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2019-02, Vol.78 (3), p.3395-3407 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2177063066 |
source | SpringerLink Journals - AutoHoldings |
subjects | Apexes Computer Communication Networks Computer Science Data Structures and Information Theory Evolution Graphs Multimedia Information Systems Nodes Search engines Social networks Special Purpose and Application-Based Systems |
title | Influential users in Twitter: detection and evolution analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influential%20users%20in%20Twitter:%20detection%20and%20evolution%20analysis&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Amati,%20Giambattista&rft.date=2019-02-01&rft.volume=78&rft.issue=3&rft.spage=3395&rft.epage=3407&rft.pages=3395-3407&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6728-4&rft_dat=%3Cproquest_cross%3E2177063066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177063066&rft_id=info:pmid/&rfr_iscdi=true |