Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure

To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2019-03, Vol.30 (3), p.736-742
Hauptverfasser: Kokubo, Hisashi, Nakazawa, Eiji, Watanabe, Masayoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue 3
container_start_page 736
container_title Polymers for advanced technologies
container_volume 30
creator Kokubo, Hisashi
Nakazawa, Eiji
Watanabe, Masayoshi
description To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10−5 S cm−1 at 30°C; 1.1 × 10−4 S cm−1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10−5 S cm−1 at 30°C; 4.0 × 10−4 S cm−1 at 60°C).
doi_str_mv 10.1002/pat.4511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2177031895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2177031895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4401-bf5efaaafdaa3f6af6039bed0a3d55c772051760dc1f915d096358339f9466703</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMUvHjpmmmbZnNcFr9gQcH1HNI0cbt2m5qkSm8-gs_ok5hu9-ppMsxvJvBH6BLwDDBOblrhZxkBOEITwIzFQOZwPLyzJKaQ0VN05twW4zBjdILqF1NXZdSaut8pG6laSW9D45WLCuFUGZlmP3W-t6pRv98_Q6f8JuiiNvI9kuaw7aKN-Kyat6iwopGbsDsy520nfWfVOTrRonbq4lCn6PXudr18iFdP94_LxSqWWYYhLjRRWgihSyFSnQud45QVqsQiLQmRlCaYAM1xKUEzICVmeUrmaco0y_Kc4nSKrsa7rTUfnXKeb01nm_AlT4AGAHNGgroelbTGOas0b221E7bngPmQJQ9Z8iHLQOORflW16v91_Hmx3vs_u8V46A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177031895</pqid></control><display><type>article</type><title>Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kokubo, Hisashi ; Nakazawa, Eiji ; Watanabe, Masayoshi</creator><creatorcontrib>Kokubo, Hisashi ; Nakazawa, Eiji ; Watanabe, Masayoshi</creatorcontrib><description>To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10−5 S cm−1 at 30°C; 1.1 × 10−4 S cm−1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10−5 S cm−1 at 30°C; 4.0 × 10−4 S cm−1 at 60°C).</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4511</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Anionic polymerization ; block copolymer ; Block copolymers ; Chemical synthesis ; Electrolytes ; Ethylene oxide ; Fillers ; Ion currents ; Ion transport ; Ions ; Lithium ; Molten salt electrolytes ; one‐pot living anionic polymerization ; Polyethylenes ; Polystyrene resins ; Solid electrolytes ; solid polymer electrolytes ; Weight</subject><ispartof>Polymers for advanced technologies, 2019-03, Vol.30 (3), p.736-742</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4401-bf5efaaafdaa3f6af6039bed0a3d55c772051760dc1f915d096358339f9466703</citedby><cites>FETCH-LOGICAL-c4401-bf5efaaafdaa3f6af6039bed0a3d55c772051760dc1f915d096358339f9466703</cites><orcidid>0000-0003-4092-6150 ; 0000-0001-9994-2863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.4511$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.4511$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kokubo, Hisashi</creatorcontrib><creatorcontrib>Nakazawa, Eiji</creatorcontrib><creatorcontrib>Watanabe, Masayoshi</creatorcontrib><title>Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure</title><title>Polymers for advanced technologies</title><description>To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10−5 S cm−1 at 30°C; 1.1 × 10−4 S cm−1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10−5 S cm−1 at 30°C; 4.0 × 10−4 S cm−1 at 60°C).</description><subject>Anionic polymerization</subject><subject>block copolymer</subject><subject>Block copolymers</subject><subject>Chemical synthesis</subject><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>Fillers</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Ions</subject><subject>Lithium</subject><subject>Molten salt electrolytes</subject><subject>one‐pot living anionic polymerization</subject><subject>Polyethylenes</subject><subject>Polystyrene resins</subject><subject>Solid electrolytes</subject><subject>solid polymer electrolytes</subject><subject>Weight</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMUvHjpmmmbZnNcFr9gQcH1HNI0cbt2m5qkSm8-gs_ok5hu9-ppMsxvJvBH6BLwDDBOblrhZxkBOEITwIzFQOZwPLyzJKaQ0VN05twW4zBjdILqF1NXZdSaut8pG6laSW9D45WLCuFUGZlmP3W-t6pRv98_Q6f8JuiiNvI9kuaw7aKN-Kyat6iwopGbsDsy520nfWfVOTrRonbq4lCn6PXudr18iFdP94_LxSqWWYYhLjRRWgihSyFSnQud45QVqsQiLQmRlCaYAM1xKUEzICVmeUrmaco0y_Kc4nSKrsa7rTUfnXKeb01nm_AlT4AGAHNGgroelbTGOas0b221E7bngPmQJQ9Z8iHLQOORflW16v91_Hmx3vs_u8V46A</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Kokubo, Hisashi</creator><creator>Nakazawa, Eiji</creator><creator>Watanabe, Masayoshi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4092-6150</orcidid><orcidid>https://orcid.org/0000-0001-9994-2863</orcidid></search><sort><creationdate>201903</creationdate><title>Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure</title><author>Kokubo, Hisashi ; Nakazawa, Eiji ; Watanabe, Masayoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4401-bf5efaaafdaa3f6af6039bed0a3d55c772051760dc1f915d096358339f9466703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anionic polymerization</topic><topic>block copolymer</topic><topic>Block copolymers</topic><topic>Chemical synthesis</topic><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>Fillers</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Ions</topic><topic>Lithium</topic><topic>Molten salt electrolytes</topic><topic>one‐pot living anionic polymerization</topic><topic>Polyethylenes</topic><topic>Polystyrene resins</topic><topic>Solid electrolytes</topic><topic>solid polymer electrolytes</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kokubo, Hisashi</creatorcontrib><creatorcontrib>Nakazawa, Eiji</creatorcontrib><creatorcontrib>Watanabe, Masayoshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kokubo, Hisashi</au><au>Nakazawa, Eiji</au><au>Watanabe, Masayoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2019-03</date><risdate>2019</risdate><volume>30</volume><issue>3</issue><spage>736</spage><epage>742</epage><pages>736-742</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10−5 S cm−1 at 30°C; 1.1 × 10−4 S cm−1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10−5 S cm−1 at 30°C; 4.0 × 10−4 S cm−1 at 60°C).</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4511</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4092-6150</orcidid><orcidid>https://orcid.org/0000-0001-9994-2863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2019-03, Vol.30 (3), p.736-742
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_journals_2177031895
source Wiley Online Library Journals Frontfile Complete
subjects Anionic polymerization
block copolymer
Block copolymers
Chemical synthesis
Electrolytes
Ethylene oxide
Fillers
Ion currents
Ion transport
Ions
Lithium
Molten salt electrolytes
one‐pot living anionic polymerization
Polyethylenes
Polystyrene resins
Solid electrolytes
solid polymer electrolytes
Weight
title Solid polymer electrolytes based on polystyrene‐polyether block copolymers having branched ether structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20polymer%20electrolytes%20based%20on%20polystyrene%E2%80%90polyether%20block%20copolymers%20having%20branched%20ether%20structure&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Kokubo,%20Hisashi&rft.date=2019-03&rft.volume=30&rft.issue=3&rft.spage=736&rft.epage=742&rft.pages=736-742&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4511&rft_dat=%3Cproquest_cross%3E2177031895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177031895&rft_id=info:pmid/&rfr_iscdi=true