Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions
The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2019-07, Vol.74 (3), p.495-522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 3 |
container_start_page | 495 |
container_title | Journal of global optimization |
container_volume | 74 |
creator | Schulze, Britta Klamroth, Kathrin Stiglmayr, Michael |
description | The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the
ε
-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems. |
doi_str_mv | 10.1007/s10898-019-00745-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2177017033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718426481</galeid><sourcerecordid>A718426481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ca7468516a44741218bd366562eb414b78dc0466d0cb3f2bb131078d970d16b3</originalsourceid><addsrcrecordid>eNp9kc1u3SAQhVGUSrlJ-wJdIXVNwmAMuLso6k-kVN1kjwDjlCsbXMBVb5--3LpSdxULxHC-M6M5CL0FeguUyrsCVA2KUBhIe_KeiAt0gF52hA0gLtGBDqwnPaVwha5LOVJKB9WzAzp92eYaSLJH72r44fEWXYqlZhOiH7FLiw3R1JSDmXFaa1jCL1NDiu-xwWuaTzEt5y-btjjiFHH95nHcFuszThP2P2v2i8dlW9eUa3Msad7OfHmNXk1mLv7N3_sGPX_88PzwmTx9_fT4cP9EXNerSpyRXKgehOFccmCg7NgJ0QvmLQdupRod5UKM1NluYtZCB7QVB0lHELa7Qe922zWn75svVR_TlmPrqBlISUHSrmuq2131YmavQ5xS24BrZ_RLaAvxU2j1ewmKM8EVNIDtgMuplOwnveawmHzSQPU5Er1Holsk-k8kWjSo26HSxPHF53-z_If6DdY7kLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177017033</pqid></control><display><type>article</type><title>Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schulze, Britta ; Klamroth, Kathrin ; Stiglmayr, Michael</creator><creatorcontrib>Schulze, Britta ; Klamroth, Kathrin ; Stiglmayr, Michael</creatorcontrib><description>The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the
ε
-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-019-00745-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Combinatorial analysis ; Computer Science ; Extreme values ; Hyperplanes ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mechanical properties ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Polynomials ; Real Functions ; Traveling salesman problem ; Weight</subject><ispartof>Journal of global optimization, 2019-07, Vol.74 (3), p.495-522</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ca7468516a44741218bd366562eb414b78dc0466d0cb3f2bb131078d970d16b3</citedby><cites>FETCH-LOGICAL-c358t-ca7468516a44741218bd366562eb414b78dc0466d0cb3f2bb131078d970d16b3</cites><orcidid>0000-0002-8528-3331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-019-00745-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-019-00745-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Schulze, Britta</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Stiglmayr, Michael</creatorcontrib><title>Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the
ε
-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Extreme values</subject><subject>Hyperplanes</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Real Functions</subject><subject>Traveling salesman problem</subject><subject>Weight</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u3SAQhVGUSrlJ-wJdIXVNwmAMuLso6k-kVN1kjwDjlCsbXMBVb5--3LpSdxULxHC-M6M5CL0FeguUyrsCVA2KUBhIe_KeiAt0gF52hA0gLtGBDqwnPaVwha5LOVJKB9WzAzp92eYaSLJH72r44fEWXYqlZhOiH7FLiw3R1JSDmXFaa1jCL1NDiu-xwWuaTzEt5y-btjjiFHH95nHcFuszThP2P2v2i8dlW9eUa3Msad7OfHmNXk1mLv7N3_sGPX_88PzwmTx9_fT4cP9EXNerSpyRXKgehOFccmCg7NgJ0QvmLQdupRod5UKM1NluYtZCB7QVB0lHELa7Qe922zWn75svVR_TlmPrqBlISUHSrmuq2131YmavQ5xS24BrZ_RLaAvxU2j1ewmKM8EVNIDtgMuplOwnveawmHzSQPU5Er1Holsk-k8kWjSo26HSxPHF53-z_If6DdY7kLA</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Schulze, Britta</creator><creator>Klamroth, Kathrin</creator><creator>Stiglmayr, Michael</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8528-3331</orcidid></search><sort><creationdate>20190715</creationdate><title>Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions</title><author>Schulze, Britta ; Klamroth, Kathrin ; Stiglmayr, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ca7468516a44741218bd366562eb414b78dc0466d0cb3f2bb131078d970d16b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Extreme values</topic><topic>Hyperplanes</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Real Functions</topic><topic>Traveling salesman problem</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulze, Britta</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Stiglmayr, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulze, Britta</au><au>Klamroth, Kathrin</au><au>Stiglmayr, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>74</volume><issue>3</issue><spage>495</spage><epage>522</epage><pages>495-522</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the
ε
-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-019-00745-6</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8528-3331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2019-07, Vol.74 (3), p.495-522 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2177017033 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Combinatorial analysis Computer Science Extreme values Hyperplanes Mathematical programming Mathematics Mathematics and Statistics Mechanical properties Multiple objective analysis Operations Research/Decision Theory Optimization Polynomials Real Functions Traveling salesman problem Weight |
title | Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20unconstrained%20combinatorial%20optimization:%20a%20polynomial%20bound%20on%20the%20number%20of%20extreme%20supported%20solutions&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Schulze,%20Britta&rft.date=2019-07-15&rft.volume=74&rft.issue=3&rft.spage=495&rft.epage=522&rft.pages=495-522&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-019-00745-6&rft_dat=%3Cgale_proqu%3EA718426481%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177017033&rft_id=info:pmid/&rft_galeid=A718426481&rfr_iscdi=true |