Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V
The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalenc...
Gespeichert in:
Veröffentlicht in: | Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2018-10, Vol.51 (4), p.327-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 4 |
container_start_page | 327 |
container_title | Vestnik, St. Petersburg University. Mathematics |
container_volume | 51 |
creator | Basov, V. V. Chermnykh, A. S. |
description | The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements. |
doi_str_mv | 10.3103/S1063454118040040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176777410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176777410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</originalsourceid><addsrcrecordid>eNp1kN1Kw0AQhRdRsFYfwLsFr6M7-5NNvJNorSCKtHobNnG3pDTZupMgvfMdfEOfxC0VvBBh4Ayc7xyYIeQU2LkAJi5mwFIhlQTImGRx9sgIciETnSm1H_doJ1v_kBwhLhlTKVdiRJ7m7z65blrbYeM7s6JT3_qF7awfkBZD1dR0tsHetnhJi5VBbFxTmz6ySE33Sh98aGNqEgXp18cnfTkmB86s0J786Jg8T27mxTS5f7y9K67uk1pA2icZAOdOV1ZXPKsy5yxowZSpmAQrXG4z0JXkijuV5o6bVIOxOq9zZ22mJYgxOdv1roN_Gyz25dIPIZ6AJQedah0hFinYUXXwiMG6ch2a1oRNCazcfq7887mY4bsMRrZb2PDb_H_oG1LAb2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176777410</pqid></control><display><type>article</type><title>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</title><source>SpringerLink Journals - AutoHoldings</source><creator>Basov, V. V. ; Chermnykh, A. S.</creator><creatorcontrib>Basov, V. V. ; Chermnykh, A. S.</creatorcontrib><description>The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.</description><identifier>ISSN: 1063-4541</identifier><identifier>EISSN: 1934-7855</identifier><identifier>DOI: 10.3103/S1063454118040040</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Equivalence ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Vestnik, St. Petersburg University. Mathematics, 2018-10, Vol.51 (4), p.327-342</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</citedby><cites>FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1063454118040040$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1063454118040040$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Basov, V. V.</creatorcontrib><creatorcontrib>Chermnykh, A. S.</creatorcontrib><title>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</title><title>Vestnik, St. Petersburg University. Mathematics</title><addtitle>Vestnik St.Petersb. Univ.Math</addtitle><description>The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.</description><subject>Analysis</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1063-4541</issn><issn>1934-7855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kN1Kw0AQhRdRsFYfwLsFr6M7-5NNvJNorSCKtHobNnG3pDTZupMgvfMdfEOfxC0VvBBh4Ayc7xyYIeQU2LkAJi5mwFIhlQTImGRx9sgIciETnSm1H_doJ1v_kBwhLhlTKVdiRJ7m7z65blrbYeM7s6JT3_qF7awfkBZD1dR0tsHetnhJi5VBbFxTmz6ySE33Sh98aGNqEgXp18cnfTkmB86s0J786Jg8T27mxTS5f7y9K67uk1pA2icZAOdOV1ZXPKsy5yxowZSpmAQrXG4z0JXkijuV5o6bVIOxOq9zZ22mJYgxOdv1roN_Gyz25dIPIZ6AJQedah0hFinYUXXwiMG6ch2a1oRNCazcfq7887mY4bsMRrZb2PDb_H_oG1LAb2w</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Basov, V. V.</creator><creator>Chermnykh, A. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</title><author>Basov, V. V. ; Chermnykh, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basov, V. V.</creatorcontrib><creatorcontrib>Chermnykh, A. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basov, V. V.</au><au>Chermnykh, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</atitle><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle><stitle>Vestnik St.Petersb. Univ.Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>51</volume><issue>4</issue><spage>327</spage><epage>342</epage><pages>327-342</pages><issn>1063-4541</issn><eissn>1934-7855</eissn><abstract>The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1063454118040040</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-4541 |
ispartof | Vestnik, St. Petersburg University. Mathematics, 2018-10, Vol.51 (4), p.327-342 |
issn | 1063-4541 1934-7855 |
language | eng |
recordid | cdi_proquest_journals_2176777410 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Equivalence Mathematics Mathematics and Statistics Polynomials |
title | Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Homogeneous%20Cubic%20Systems:%20Classifications%20and%20Normal%20Forms%20%E2%80%93%20V&rft.jtitle=Vestnik,%20St.%20Petersburg%20University.%20Mathematics&rft.au=Basov,%20V.%20V.&rft.date=2018-10-01&rft.volume=51&rft.issue=4&rft.spage=327&rft.epage=342&rft.pages=327-342&rft.issn=1063-4541&rft.eissn=1934-7855&rft_id=info:doi/10.3103/S1063454118040040&rft_dat=%3Cproquest_cross%3E2176777410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176777410&rft_id=info:pmid/&rfr_iscdi=true |