Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V

The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik, St. Petersburg University. Mathematics St. Petersburg University. Mathematics, 2018-10, Vol.51 (4), p.327-342
Hauptverfasser: Basov, V. V., Chermnykh, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue 4
container_start_page 327
container_title Vestnik, St. Petersburg University. Mathematics
container_volume 51
creator Basov, V. V.
Chermnykh, A. S.
description The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.
doi_str_mv 10.3103/S1063454118040040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176777410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176777410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</originalsourceid><addsrcrecordid>eNp1kN1Kw0AQhRdRsFYfwLsFr6M7-5NNvJNorSCKtHobNnG3pDTZupMgvfMdfEOfxC0VvBBh4Ayc7xyYIeQU2LkAJi5mwFIhlQTImGRx9sgIciETnSm1H_doJ1v_kBwhLhlTKVdiRJ7m7z65blrbYeM7s6JT3_qF7awfkBZD1dR0tsHetnhJi5VBbFxTmz6ySE33Sh98aGNqEgXp18cnfTkmB86s0J786Jg8T27mxTS5f7y9K67uk1pA2icZAOdOV1ZXPKsy5yxowZSpmAQrXG4z0JXkijuV5o6bVIOxOq9zZ22mJYgxOdv1roN_Gyz25dIPIZ6AJQedah0hFinYUXXwiMG6ch2a1oRNCazcfq7887mY4bsMRrZb2PDb_H_oG1LAb2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176777410</pqid></control><display><type>article</type><title>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</title><source>SpringerLink Journals - AutoHoldings</source><creator>Basov, V. V. ; Chermnykh, A. S.</creator><creatorcontrib>Basov, V. V. ; Chermnykh, A. S.</creatorcontrib><description>The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.</description><identifier>ISSN: 1063-4541</identifier><identifier>EISSN: 1934-7855</identifier><identifier>DOI: 10.3103/S1063454118040040</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Equivalence ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Vestnik, St. Petersburg University. Mathematics, 2018-10, Vol.51 (4), p.327-342</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</citedby><cites>FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1063454118040040$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1063454118040040$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Basov, V. V.</creatorcontrib><creatorcontrib>Chermnykh, A. S.</creatorcontrib><title>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</title><title>Vestnik, St. Petersburg University. Mathematics</title><addtitle>Vestnik St.Petersb. Univ.Math</addtitle><description>The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.</description><subject>Analysis</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1063-4541</issn><issn>1934-7855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kN1Kw0AQhRdRsFYfwLsFr6M7-5NNvJNorSCKtHobNnG3pDTZupMgvfMdfEOfxC0VvBBh4Ayc7xyYIeQU2LkAJi5mwFIhlQTImGRx9sgIciETnSm1H_doJ1v_kBwhLhlTKVdiRJ7m7z65blrbYeM7s6JT3_qF7awfkBZD1dR0tsHetnhJi5VBbFxTmz6ySE33Sh98aGNqEgXp18cnfTkmB86s0J786Jg8T27mxTS5f7y9K67uk1pA2icZAOdOV1ZXPKsy5yxowZSpmAQrXG4z0JXkijuV5o6bVIOxOq9zZ22mJYgxOdv1roN_Gyz25dIPIZ6AJQedah0hFinYUXXwiMG6ch2a1oRNCazcfq7887mY4bsMRrZb2PDb_H_oG1LAb2w</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Basov, V. V.</creator><creator>Chermnykh, A. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</title><author>Basov, V. V. ; Chermnykh, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-81122f7be7b28b8ffe17305ab041e3f9e817b4252f569f2a671ae79c9fee87413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basov, V. V.</creatorcontrib><creatorcontrib>Chermnykh, A. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basov, V. V.</au><au>Chermnykh, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V</atitle><jtitle>Vestnik, St. Petersburg University. Mathematics</jtitle><stitle>Vestnik St.Petersb. Univ.Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>51</volume><issue>4</issue><spage>327</spage><epage>342</epage><pages>327-342</pages><issn>1063-4541</issn><eissn>1934-7855</eissn><abstract>The present article is the fifth in a cycle of papers dedicated to two-dimensional homogeneous cubic systems. It considers a case when the homogeneous polynomial vector in the right-hand part of the system has a linear common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished based on properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization, and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: (a) conditions on the coefficients of the initial system, (b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, (c) obtained values of CF’s unnormalized elements.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1063454118040040</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4541
ispartof Vestnik, St. Petersburg University. Mathematics, 2018-10, Vol.51 (4), p.327-342
issn 1063-4541
1934-7855
language eng
recordid cdi_proquest_journals_2176777410
source SpringerLink Journals - AutoHoldings
subjects Analysis
Equivalence
Mathematics
Mathematics and Statistics
Polynomials
title Two-Dimensional Homogeneous Cubic Systems: Classifications and Normal Forms – V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Homogeneous%20Cubic%20Systems:%20Classifications%20and%20Normal%20Forms%20%E2%80%93%20V&rft.jtitle=Vestnik,%20St.%20Petersburg%20University.%20Mathematics&rft.au=Basov,%20V.%20V.&rft.date=2018-10-01&rft.volume=51&rft.issue=4&rft.spage=327&rft.epage=342&rft.pages=327-342&rft.issn=1063-4541&rft.eissn=1934-7855&rft_id=info:doi/10.3103/S1063454118040040&rft_dat=%3Cproquest_cross%3E2176777410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176777410&rft_id=info:pmid/&rfr_iscdi=true