Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales

Using the scale invariance of the Navier–Stokes equations to define appropriate space-and-time-averaged inverse length scales associated with weak solutions of the 3 D Navier–Stokes equations, on a periodic domain V = [ 0 , L ] 3 an infinite ‘chessboard’ of estimates for these inverse length scales...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2019-02, Vol.29 (1), p.215-228
1. Verfasser: Gibbon, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 1
container_start_page 215
container_title Journal of nonlinear science
container_volume 29
creator Gibbon, J. D.
description Using the scale invariance of the Navier–Stokes equations to define appropriate space-and-time-averaged inverse length scales associated with weak solutions of the 3 D Navier–Stokes equations, on a periodic domain V = [ 0 , L ] 3 an infinite ‘chessboard’ of estimates for these inverse length scales is displayed in terms of labels ( n , m ) corresponding to n derivatives of the velocity field in L 2 m ( V ) . The ( 1 , 1 ) position corresponds to the inverse Kolmogorov length R e 3 / 4 . These estimates ultimately converge to a finite limit, R e 3 , as n , m → ∞ , although this limit is too large to lie within the physical validity of the equations for realistically large Reynolds numbers. Moreover, all the known time-averaged estimates for weak solutions can be rolled into one single estimate, labelled by ( n , m ) . In contrast, those required for strong solutions to exist can be written in another single estimate, also labelled by ( n , m ) , the only difference being a factor of 2 in the exponent. This appears to be a generalization of the Prodi–Serrin conditions for n ≥ 1 .
doi_str_mv 10.1007/s00332-018-9484-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176777250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176777250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3469baa16cf1069ca5e1c6a2d8a929939d6047c07571527200dcf252296b83973</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62oubdIsZRx1YFCwIy5Dpj3t3GxmknTAnQvfwDf0SWyt4MrVORy-7z_wI3ROySUlRF55QjhnEaFppOI0jtIDNKBxe6GxkIdoQBRPo1TJ-BideL8ihMqEswH6eAGzxqYucBacrSuc2U0Tlrb22JY4LADzG_xg9ktwX--fWbBr8Hi8a0zPdOJsAUuHn2Dzc8PBYoNHC_B-bo0rupiRrffgKqgDnnSbBzyFugoLnOVmA_4UHZVm4-Hsdw7R8-14NrqPpo93k9H1NMo5FSHisVBzY6jIS0qEyk0CNBeGFalRTCmuCkFimROZSJowyQgp8pIljCkxT7mSfIgu-tyts7sGfNAr27i6fakZlUJKyRLSUrSncme9d1DqrVu-GvemKdFd2bovW7dl665snbYO6x3fsnUF7i_5f-kbDl6CSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176777250</pqid></control><display><type>article</type><title>Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gibbon, J. D.</creator><creatorcontrib>Gibbon, J. D.</creatorcontrib><description>Using the scale invariance of the Navier–Stokes equations to define appropriate space-and-time-averaged inverse length scales associated with weak solutions of the 3 D Navier–Stokes equations, on a periodic domain V = [ 0 , L ] 3 an infinite ‘chessboard’ of estimates for these inverse length scales is displayed in terms of labels ( n , m ) corresponding to n derivatives of the velocity field in L 2 m ( V ) . The ( 1 , 1 ) position corresponds to the inverse Kolmogorov length R e 3 / 4 . These estimates ultimately converge to a finite limit, R e 3 , as n , m → ∞ , although this limit is too large to lie within the physical validity of the equations for realistically large Reynolds numbers. Moreover, all the known time-averaged estimates for weak solutions can be rolled into one single estimate, labelled by ( n , m ) . In contrast, those required for strong solutions to exist can be written in another single estimate, also labelled by ( n , m ) , the only difference being a factor of 2 in the exponent. This appears to be a generalization of the Prodi–Serrin conditions for n ≥ 1 .</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-018-9484-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Classical Mechanics ; Convergence ; Economic Theory/Quantitative Economics/Mathematical Methods ; Estimates ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Scale invariance ; Theoretical ; Velocity distribution</subject><ispartof>Journal of nonlinear science, 2019-02, Vol.29 (1), p.215-228</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3469baa16cf1069ca5e1c6a2d8a929939d6047c07571527200dcf252296b83973</citedby><cites>FETCH-LOGICAL-c316t-3469baa16cf1069ca5e1c6a2d8a929939d6047c07571527200dcf252296b83973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-018-9484-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-018-9484-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gibbon, J. D.</creatorcontrib><title>Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>Using the scale invariance of the Navier–Stokes equations to define appropriate space-and-time-averaged inverse length scales associated with weak solutions of the 3 D Navier–Stokes equations, on a periodic domain V = [ 0 , L ] 3 an infinite ‘chessboard’ of estimates for these inverse length scales is displayed in terms of labels ( n , m ) corresponding to n derivatives of the velocity field in L 2 m ( V ) . The ( 1 , 1 ) position corresponds to the inverse Kolmogorov length R e 3 / 4 . These estimates ultimately converge to a finite limit, R e 3 , as n , m → ∞ , although this limit is too large to lie within the physical validity of the equations for realistically large Reynolds numbers. Moreover, all the known time-averaged estimates for weak solutions can be rolled into one single estimate, labelled by ( n , m ) . In contrast, those required for strong solutions to exist can be written in another single estimate, also labelled by ( n , m ) , the only difference being a factor of 2 in the exponent. This appears to be a generalization of the Prodi–Serrin conditions for n ≥ 1 .</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Convergence</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Estimates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Scale invariance</subject><subject>Theoretical</subject><subject>Velocity distribution</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62oubdIsZRx1YFCwIy5Dpj3t3GxmknTAnQvfwDf0SWyt4MrVORy-7z_wI3ROySUlRF55QjhnEaFppOI0jtIDNKBxe6GxkIdoQBRPo1TJ-BideL8ihMqEswH6eAGzxqYucBacrSuc2U0Tlrb22JY4LADzG_xg9ktwX--fWbBr8Hi8a0zPdOJsAUuHn2Dzc8PBYoNHC_B-bo0rupiRrffgKqgDnnSbBzyFugoLnOVmA_4UHZVm4-Hsdw7R8-14NrqPpo93k9H1NMo5FSHisVBzY6jIS0qEyk0CNBeGFalRTCmuCkFimROZSJowyQgp8pIljCkxT7mSfIgu-tyts7sGfNAr27i6fakZlUJKyRLSUrSncme9d1DqrVu-GvemKdFd2bovW7dl665snbYO6x3fsnUF7i_5f-kbDl6CSQ</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Gibbon, J. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales</title><author>Gibbon, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3469baa16cf1069ca5e1c6a2d8a929939d6047c07571527200dcf252296b83973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Convergence</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Estimates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Scale invariance</topic><topic>Theoretical</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibbon, J. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibbon, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>215</spage><epage>228</epage><pages>215-228</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>Using the scale invariance of the Navier–Stokes equations to define appropriate space-and-time-averaged inverse length scales associated with weak solutions of the 3 D Navier–Stokes equations, on a periodic domain V = [ 0 , L ] 3 an infinite ‘chessboard’ of estimates for these inverse length scales is displayed in terms of labels ( n , m ) corresponding to n derivatives of the velocity field in L 2 m ( V ) . The ( 1 , 1 ) position corresponds to the inverse Kolmogorov length R e 3 / 4 . These estimates ultimately converge to a finite limit, R e 3 , as n , m → ∞ , although this limit is too large to lie within the physical validity of the equations for realistically large Reynolds numbers. Moreover, all the known time-averaged estimates for weak solutions can be rolled into one single estimate, labelled by ( n , m ) . In contrast, those required for strong solutions to exist can be written in another single estimate, also labelled by ( n , m ) , the only difference being a factor of 2 in the exponent. This appears to be a generalization of the Prodi–Serrin conditions for n ≥ 1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-018-9484-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-8974
ispartof Journal of nonlinear science, 2019-02, Vol.29 (1), p.215-228
issn 0938-8974
1432-1467
language eng
recordid cdi_proquest_journals_2176777250
source SpringerLink Journals - AutoHoldings
subjects Analysis
Classical Mechanics
Convergence
Economic Theory/Quantitative Economics/Mathematical Methods
Estimates
Fluid dynamics
Fluid flow
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Scale invariance
Theoretical
Velocity distribution
title Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20and%20Strong%20Solutions%20of%20the%203D%20Navier%E2%80%93Stokes%20Equations%20and%20Their%20Relation%20to%20a%20Chessboard%20of%20Convergent%20Inverse%20Length%20Scales&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Gibbon,%20J.%20D.&rft.date=2019-02-15&rft.volume=29&rft.issue=1&rft.spage=215&rft.epage=228&rft.pages=215-228&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-018-9484-8&rft_dat=%3Cproquest_cross%3E2176777250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176777250&rft_id=info:pmid/&rfr_iscdi=true