Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral–Spatial Feature Extraction

Feature extraction is a preprocessing step for hyperspectral image classification. Principal component analysis only uses the spectral information, but it does not use spatial information of a hyperspectral image. Both spatial and spectral information are used when hyperspectral image is modelled as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2019-01, Vol.47 (1), p.91-100
Hauptverfasser: Yan, Ronghua, Peng, Jinye, Ma, Dongmei, Wen, Desheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 91
container_title Journal of the Indian Society of Remote Sensing
container_volume 47
creator Yan, Ronghua
Peng, Jinye
Ma, Dongmei
Wen, Desheng
description Feature extraction is a preprocessing step for hyperspectral image classification. Principal component analysis only uses the spectral information, but it does not use spatial information of a hyperspectral image. Both spatial and spectral information are used when hyperspectral image is modelled as tensor, that is, decreasing the noise on spatial dimension and reducing the dimension on a spectral dimension at the same time. However, in this model, a hyperspectral image is modelled only as a data cube. The factors affecting the spectral features of ground objects is not considered and these factors are barely distinguished. This means that further improving classification is very difficult. Therefore, a new model on hyperspectral image is proposed by the authors. In the new model, many factors that impact the spectral features of ground objects are synthesized as the within-class factor. The within-class factor, the class factor and the pixel spectral are selected as a mode, respectively. The pixel spectrals in the training set are modelled as a third-order tensor. The experiment results indicate that the new method improves the classification compared with the previous methods.
doi_str_mv 10.1007/s12524-018-0873-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176776356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176776356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-836d1cbe53e6ccbe67b04963a348a48b0c79eadd13ebd0de1f9d440b2b821fb23</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwHXo3cemUmWpbS2UHDRCu7GSXJTU9okzqRgd_6Df-iXOCUWV67O4Z4H3EPILYN7BqAfPOMxlxRYQiHRgsIZGUCqJRUA6jxwHsdUKXi5JFfeb8JRxowPyOuyxbxzdhutsPaNi5aHuntDX_loVNvt4UjKcJ4dWnT-5J3v7BqjU_T782vZ2q4KwhRtt3cYTT6CkHdVU1-Ti9JuPd784pA8Tyer8Ywunh7n49GC5oKpjiZCFSzPMBao8oBKZyBTJayQiZVJBrlO0RYFE5gVUCAr00JKyHiWcFZmXAzJXd_buuZ9j74zm2bvwgvecKaV1krEKrhY78pd473D0rSu2ll3MAzMcUjTD2nCkOY4pIGQ4X3GB2-9RvfX_H_oB-MSeMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176776356</pqid></control><display><type>article</type><title>Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral–Spatial Feature Extraction</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Ronghua ; Peng, Jinye ; Ma, Dongmei ; Wen, Desheng</creator><creatorcontrib>Yan, Ronghua ; Peng, Jinye ; Ma, Dongmei ; Wen, Desheng</creatorcontrib><description>Feature extraction is a preprocessing step for hyperspectral image classification. Principal component analysis only uses the spectral information, but it does not use spatial information of a hyperspectral image. Both spatial and spectral information are used when hyperspectral image is modelled as tensor, that is, decreasing the noise on spatial dimension and reducing the dimension on a spectral dimension at the same time. However, in this model, a hyperspectral image is modelled only as a data cube. The factors affecting the spectral features of ground objects is not considered and these factors are barely distinguished. This means that further improving classification is very difficult. Therefore, a new model on hyperspectral image is proposed by the authors. In the new model, many factors that impact the spectral features of ground objects are synthesized as the within-class factor. The within-class factor, the class factor and the pixel spectral are selected as a mode, respectively. The pixel spectrals in the training set are modelled as a third-order tensor. The experiment results indicate that the new method improves the classification compared with the previous methods.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-018-0873-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Classification ; Earth and Environmental Science ; Earth Sciences ; Feature extraction ; Hyperspectral imaging ; Image classification ; Mathematical analysis ; Pixels ; Principal components analysis ; Remote Sensing/Photogrammetry ; Research Article ; Spatial data ; Spectra ; Tensors</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2019-01, Vol.47 (1), p.91-100</ispartof><rights>Indian Society of Remote Sensing 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-836d1cbe53e6ccbe67b04963a348a48b0c79eadd13ebd0de1f9d440b2b821fb23</citedby><cites>FETCH-LOGICAL-c316t-836d1cbe53e6ccbe67b04963a348a48b0c79eadd13ebd0de1f9d440b2b821fb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-018-0873-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-018-0873-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yan, Ronghua</creatorcontrib><creatorcontrib>Peng, Jinye</creatorcontrib><creatorcontrib>Ma, Dongmei</creatorcontrib><creatorcontrib>Wen, Desheng</creatorcontrib><title>Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral–Spatial Feature Extraction</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>Feature extraction is a preprocessing step for hyperspectral image classification. Principal component analysis only uses the spectral information, but it does not use spatial information of a hyperspectral image. Both spatial and spectral information are used when hyperspectral image is modelled as tensor, that is, decreasing the noise on spatial dimension and reducing the dimension on a spectral dimension at the same time. However, in this model, a hyperspectral image is modelled only as a data cube. The factors affecting the spectral features of ground objects is not considered and these factors are barely distinguished. This means that further improving classification is very difficult. Therefore, a new model on hyperspectral image is proposed by the authors. In the new model, many factors that impact the spectral features of ground objects are synthesized as the within-class factor. The within-class factor, the class factor and the pixel spectral are selected as a mode, respectively. The pixel spectrals in the training set are modelled as a third-order tensor. The experiment results indicate that the new method improves the classification compared with the previous methods.</description><subject>Classification</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Mathematical analysis</subject><subject>Pixels</subject><subject>Principal components analysis</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Spatial data</subject><subject>Spectra</subject><subject>Tensors</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBWv0AdwHXo3cemUmWpbS2UHDRCu7GSXJTU9okzqRgd_6Df-iXOCUWV67O4Z4H3EPILYN7BqAfPOMxlxRYQiHRgsIZGUCqJRUA6jxwHsdUKXi5JFfeb8JRxowPyOuyxbxzdhutsPaNi5aHuntDX_loVNvt4UjKcJ4dWnT-5J3v7BqjU_T782vZ2q4KwhRtt3cYTT6CkHdVU1-Ti9JuPd784pA8Tyer8Ywunh7n49GC5oKpjiZCFSzPMBao8oBKZyBTJayQiZVJBrlO0RYFE5gVUCAr00JKyHiWcFZmXAzJXd_buuZ9j74zm2bvwgvecKaV1krEKrhY78pd473D0rSu2ll3MAzMcUjTD2nCkOY4pIGQ4X3GB2-9RvfX_H_oB-MSeMY</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Yan, Ronghua</creator><creator>Peng, Jinye</creator><creator>Ma, Dongmei</creator><creator>Wen, Desheng</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral–Spatial Feature Extraction</title><author>Yan, Ronghua ; Peng, Jinye ; Ma, Dongmei ; Wen, Desheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-836d1cbe53e6ccbe67b04963a348a48b0c79eadd13ebd0de1f9d440b2b821fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Mathematical analysis</topic><topic>Pixels</topic><topic>Principal components analysis</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Spatial data</topic><topic>Spectra</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ronghua</creatorcontrib><creatorcontrib>Peng, Jinye</creatorcontrib><creatorcontrib>Ma, Dongmei</creatorcontrib><creatorcontrib>Wen, Desheng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ronghua</au><au>Peng, Jinye</au><au>Ma, Dongmei</au><au>Wen, Desheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral–Spatial Feature Extraction</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>47</volume><issue>1</issue><spage>91</spage><epage>100</epage><pages>91-100</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>Feature extraction is a preprocessing step for hyperspectral image classification. Principal component analysis only uses the spectral information, but it does not use spatial information of a hyperspectral image. Both spatial and spectral information are used when hyperspectral image is modelled as tensor, that is, decreasing the noise on spatial dimension and reducing the dimension on a spectral dimension at the same time. However, in this model, a hyperspectral image is modelled only as a data cube. The factors affecting the spectral features of ground objects is not considered and these factors are barely distinguished. This means that further improving classification is very difficult. Therefore, a new model on hyperspectral image is proposed by the authors. In the new model, many factors that impact the spectral features of ground objects are synthesized as the within-class factor. The within-class factor, the class factor and the pixel spectral are selected as a mode, respectively. The pixel spectrals in the training set are modelled as a third-order tensor. The experiment results indicate that the new method improves the classification compared with the previous methods.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-018-0873-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2019-01, Vol.47 (1), p.91-100
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2176776356
source Springer Nature - Complete Springer Journals
subjects Classification
Earth and Environmental Science
Earth Sciences
Feature extraction
Hyperspectral imaging
Image classification
Mathematical analysis
Pixels
Principal components analysis
Remote Sensing/Photogrammetry
Research Article
Spatial data
Spectra
Tensors
title Spectral Tensor Synthesis Analysis for Hyperspectral Image Spectral–Spatial Feature Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Tensor%20Synthesis%20Analysis%20for%20Hyperspectral%20Image%20Spectral%E2%80%93Spatial%20Feature%20Extraction&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Yan,%20Ronghua&rft.date=2019-01-01&rft.volume=47&rft.issue=1&rft.spage=91&rft.epage=100&rft.pages=91-100&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-018-0873-0&rft_dat=%3Cproquest_cross%3E2176776356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176776356&rft_id=info:pmid/&rfr_iscdi=true