Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity

Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2019-01, Vol.162, p.63-72
Hauptverfasser: Bodnaruk, Andrii V., Brunhuber, Alexander, Kalita, Viktor M., Kulyk, Mykola M., Kurzweil, Peter, Snarskii, Andrei A., Lozenko, Albert F., Ryabchenko, Sergey M., Shamonin, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 63
container_title Polymer (Guilford)
container_volume 162
creator Bodnaruk, Andrii V.
Brunhuber, Alexander
Kalita, Viktor M.
Kulyk, Mykola M.
Kurzweil, Peter
Snarskii, Andrei A.
Lozenko, Albert F.
Ryabchenko, Sergey M.
Shamonin, Mikhail
description Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators. [Display omitted] •Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.
doi_str_mv 10.1016/j.polymer.2018.12.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176698427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386118311418</els_id><sourcerecordid>2176698427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQsGtrXk0aboSGXzBDG50HdL0VlI6TU0yg_17O9PZu7pwz4tzELolOCOYiIc2G1w3bsFnFBOZEZphWpyhBZEFSyktyTlaYMxoyqQgl-gqhBZjTDnNF2iz0d89RGsS3dvgonfDmNg-2R7fTpto95BAp0N0U0K4T6DXVQd1Uo0TKXr7O6PW2Dheo4tGdwFuTneJvl6eP1dv6frj9X31tE4NK_KY1gbLmnNTgMANrqSogVQa51gKTXKmDWe6KbkxTJRaCzAllxUwXrOmbDjRbInuZt_Bu58dhKhat_P9FKkoKYQoZU6LicVnlvEuBA-NGrzdaj8qgtVhOdWq03LqsJwiVOGj7nHWwVRhbyc0GAu9gdp6MFHVzv7j8Ae543uo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176698427</pqid></control><display><type>article</type><title>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bodnaruk, Andrii V. ; Brunhuber, Alexander ; Kalita, Viktor M. ; Kulyk, Mykola M. ; Kurzweil, Peter ; Snarskii, Andrei A. ; Lozenko, Albert F. ; Ryabchenko, Sergey M. ; Shamonin, Mikhail</creator><creatorcontrib>Bodnaruk, Andrii V. ; Brunhuber, Alexander ; Kalita, Viktor M. ; Kulyk, Mykola M. ; Kurzweil, Peter ; Snarskii, Andrei A. ; Lozenko, Albert F. ; Ryabchenko, Sergey M. ; Shamonin, Mikhail</creatorcontrib><description>Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators. [Display omitted] •Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2018.12.027</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Composite materials ; Deformation mechanisms ; Elasticity ; Elastomers ; Experimental methodology ; Freezing ; Internal deformation ; Iron ; Isolators ; Low temperature ; Magnetic anisotropy ; Magnetic fields ; Magnetic properties ; Magnetism ; Magnetization ; Magnetization curves ; Magnetoactive elastomer ; Magnetomechanical coupling ; Magnetorheological elastomer ; Microparticles ; Polydimethylsiloxane ; Rigidity ; Shear modulus ; Temperature effects ; Vibration</subject><ispartof>Polymer (Guilford), 2019-01, Vol.162, p.63-72</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 24, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</citedby><cites>FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</cites><orcidid>0000-0001-5637-7526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2018.12.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bodnaruk, Andrii V.</creatorcontrib><creatorcontrib>Brunhuber, Alexander</creatorcontrib><creatorcontrib>Kalita, Viktor M.</creatorcontrib><creatorcontrib>Kulyk, Mykola M.</creatorcontrib><creatorcontrib>Kurzweil, Peter</creatorcontrib><creatorcontrib>Snarskii, Andrei A.</creatorcontrib><creatorcontrib>Lozenko, Albert F.</creatorcontrib><creatorcontrib>Ryabchenko, Sergey M.</creatorcontrib><creatorcontrib>Shamonin, Mikhail</creatorcontrib><title>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</title><title>Polymer (Guilford)</title><description>Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators. [Display omitted] •Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.</description><subject>Anisotropy</subject><subject>Composite materials</subject><subject>Deformation mechanisms</subject><subject>Elasticity</subject><subject>Elastomers</subject><subject>Experimental methodology</subject><subject>Freezing</subject><subject>Internal deformation</subject><subject>Iron</subject><subject>Isolators</subject><subject>Low temperature</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetization curves</subject><subject>Magnetoactive elastomer</subject><subject>Magnetomechanical coupling</subject><subject>Magnetorheological elastomer</subject><subject>Microparticles</subject><subject>Polydimethylsiloxane</subject><subject>Rigidity</subject><subject>Shear modulus</subject><subject>Temperature effects</subject><subject>Vibration</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQsGtrXk0aboSGXzBDG50HdL0VlI6TU0yg_17O9PZu7pwz4tzELolOCOYiIc2G1w3bsFnFBOZEZphWpyhBZEFSyktyTlaYMxoyqQgl-gqhBZjTDnNF2iz0d89RGsS3dvgonfDmNg-2R7fTpto95BAp0N0U0K4T6DXVQd1Uo0TKXr7O6PW2Dheo4tGdwFuTneJvl6eP1dv6frj9X31tE4NK_KY1gbLmnNTgMANrqSogVQa51gKTXKmDWe6KbkxTJRaCzAllxUwXrOmbDjRbInuZt_Bu58dhKhat_P9FKkoKYQoZU6LicVnlvEuBA-NGrzdaj8qgtVhOdWq03LqsJwiVOGj7nHWwVRhbyc0GAu9gdp6MFHVzv7j8Ae543uo</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Bodnaruk, Andrii V.</creator><creator>Brunhuber, Alexander</creator><creator>Kalita, Viktor M.</creator><creator>Kulyk, Mykola M.</creator><creator>Kurzweil, Peter</creator><creator>Snarskii, Andrei A.</creator><creator>Lozenko, Albert F.</creator><creator>Ryabchenko, Sergey M.</creator><creator>Shamonin, Mikhail</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5637-7526</orcidid></search><sort><creationdate>20190124</creationdate><title>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</title><author>Bodnaruk, Andrii V. ; Brunhuber, Alexander ; Kalita, Viktor M. ; Kulyk, Mykola M. ; Kurzweil, Peter ; Snarskii, Andrei A. ; Lozenko, Albert F. ; Ryabchenko, Sergey M. ; Shamonin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Composite materials</topic><topic>Deformation mechanisms</topic><topic>Elasticity</topic><topic>Elastomers</topic><topic>Experimental methodology</topic><topic>Freezing</topic><topic>Internal deformation</topic><topic>Iron</topic><topic>Isolators</topic><topic>Low temperature</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetization curves</topic><topic>Magnetoactive elastomer</topic><topic>Magnetomechanical coupling</topic><topic>Magnetorheological elastomer</topic><topic>Microparticles</topic><topic>Polydimethylsiloxane</topic><topic>Rigidity</topic><topic>Shear modulus</topic><topic>Temperature effects</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodnaruk, Andrii V.</creatorcontrib><creatorcontrib>Brunhuber, Alexander</creatorcontrib><creatorcontrib>Kalita, Viktor M.</creatorcontrib><creatorcontrib>Kulyk, Mykola M.</creatorcontrib><creatorcontrib>Kurzweil, Peter</creatorcontrib><creatorcontrib>Snarskii, Andrei A.</creatorcontrib><creatorcontrib>Lozenko, Albert F.</creatorcontrib><creatorcontrib>Ryabchenko, Sergey M.</creatorcontrib><creatorcontrib>Shamonin, Mikhail</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodnaruk, Andrii V.</au><au>Brunhuber, Alexander</au><au>Kalita, Viktor M.</au><au>Kulyk, Mykola M.</au><au>Kurzweil, Peter</au><au>Snarskii, Andrei A.</au><au>Lozenko, Albert F.</au><au>Ryabchenko, Sergey M.</au><au>Shamonin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>162</volume><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators. [Display omitted] •Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2018.12.027</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5637-7526</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2019-01, Vol.162, p.63-72
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2176698427
source ScienceDirect Journals (5 years ago - present)
subjects Anisotropy
Composite materials
Deformation mechanisms
Elasticity
Elastomers
Experimental methodology
Freezing
Internal deformation
Iron
Isolators
Low temperature
Magnetic anisotropy
Magnetic fields
Magnetic properties
Magnetism
Magnetization
Magnetization curves
Magnetoactive elastomer
Magnetomechanical coupling
Magnetorheological elastomer
Microparticles
Polydimethylsiloxane
Rigidity
Shear modulus
Temperature effects
Vibration
title Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20anisotropy%20in%20magnetoactive%20elastomers,%20enabled%20by%20matrix%20elasticity&rft.jtitle=Polymer%20(Guilford)&rft.au=Bodnaruk,%20Andrii%20V.&rft.date=2019-01-24&rft.volume=162&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2018.12.027&rft_dat=%3Cproquest_cross%3E2176698427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176698427&rft_id=info:pmid/&rft_els_id=S0032386118311418&rfr_iscdi=true