Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity
Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so t...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2019-01, Vol.162, p.63-72 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Polymer (Guilford) |
container_volume | 162 |
creator | Bodnaruk, Andrii V. Brunhuber, Alexander Kalita, Viktor M. Kulyk, Mykola M. Kurzweil, Peter Snarskii, Andrei A. Lozenko, Albert F. Ryabchenko, Sergey M. Shamonin, Mikhail |
description | Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators.
[Display omitted]
•Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found. |
doi_str_mv | 10.1016/j.polymer.2018.12.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176698427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386118311418</els_id><sourcerecordid>2176698427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQsGtrXk0aboSGXzBDG50HdL0VlI6TU0yg_17O9PZu7pwz4tzELolOCOYiIc2G1w3bsFnFBOZEZphWpyhBZEFSyktyTlaYMxoyqQgl-gqhBZjTDnNF2iz0d89RGsS3dvgonfDmNg-2R7fTpto95BAp0N0U0K4T6DXVQd1Uo0TKXr7O6PW2Dheo4tGdwFuTneJvl6eP1dv6frj9X31tE4NK_KY1gbLmnNTgMANrqSogVQa51gKTXKmDWe6KbkxTJRaCzAllxUwXrOmbDjRbInuZt_Bu58dhKhat_P9FKkoKYQoZU6LicVnlvEuBA-NGrzdaj8qgtVhOdWq03LqsJwiVOGj7nHWwVRhbyc0GAu9gdp6MFHVzv7j8Ae543uo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176698427</pqid></control><display><type>article</type><title>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bodnaruk, Andrii V. ; Brunhuber, Alexander ; Kalita, Viktor M. ; Kulyk, Mykola M. ; Kurzweil, Peter ; Snarskii, Andrei A. ; Lozenko, Albert F. ; Ryabchenko, Sergey M. ; Shamonin, Mikhail</creator><creatorcontrib>Bodnaruk, Andrii V. ; Brunhuber, Alexander ; Kalita, Viktor M. ; Kulyk, Mykola M. ; Kurzweil, Peter ; Snarskii, Andrei A. ; Lozenko, Albert F. ; Ryabchenko, Sergey M. ; Shamonin, Mikhail</creatorcontrib><description>Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators.
[Display omitted]
•Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2018.12.027</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Composite materials ; Deformation mechanisms ; Elasticity ; Elastomers ; Experimental methodology ; Freezing ; Internal deformation ; Iron ; Isolators ; Low temperature ; Magnetic anisotropy ; Magnetic fields ; Magnetic properties ; Magnetism ; Magnetization ; Magnetization curves ; Magnetoactive elastomer ; Magnetomechanical coupling ; Magnetorheological elastomer ; Microparticles ; Polydimethylsiloxane ; Rigidity ; Shear modulus ; Temperature effects ; Vibration</subject><ispartof>Polymer (Guilford), 2019-01, Vol.162, p.63-72</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 24, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</citedby><cites>FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</cites><orcidid>0000-0001-5637-7526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2018.12.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bodnaruk, Andrii V.</creatorcontrib><creatorcontrib>Brunhuber, Alexander</creatorcontrib><creatorcontrib>Kalita, Viktor M.</creatorcontrib><creatorcontrib>Kulyk, Mykola M.</creatorcontrib><creatorcontrib>Kurzweil, Peter</creatorcontrib><creatorcontrib>Snarskii, Andrei A.</creatorcontrib><creatorcontrib>Lozenko, Albert F.</creatorcontrib><creatorcontrib>Ryabchenko, Sergey M.</creatorcontrib><creatorcontrib>Shamonin, Mikhail</creatorcontrib><title>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</title><title>Polymer (Guilford)</title><description>Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators.
[Display omitted]
•Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.</description><subject>Anisotropy</subject><subject>Composite materials</subject><subject>Deformation mechanisms</subject><subject>Elasticity</subject><subject>Elastomers</subject><subject>Experimental methodology</subject><subject>Freezing</subject><subject>Internal deformation</subject><subject>Iron</subject><subject>Isolators</subject><subject>Low temperature</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetization curves</subject><subject>Magnetoactive elastomer</subject><subject>Magnetomechanical coupling</subject><subject>Magnetorheological elastomer</subject><subject>Microparticles</subject><subject>Polydimethylsiloxane</subject><subject>Rigidity</subject><subject>Shear modulus</subject><subject>Temperature effects</subject><subject>Vibration</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQsGtrXk0aboSGXzBDG50HdL0VlI6TU0yg_17O9PZu7pwz4tzELolOCOYiIc2G1w3bsFnFBOZEZphWpyhBZEFSyktyTlaYMxoyqQgl-gqhBZjTDnNF2iz0d89RGsS3dvgonfDmNg-2R7fTpto95BAp0N0U0K4T6DXVQd1Uo0TKXr7O6PW2Dheo4tGdwFuTneJvl6eP1dv6frj9X31tE4NK_KY1gbLmnNTgMANrqSogVQa51gKTXKmDWe6KbkxTJRaCzAllxUwXrOmbDjRbInuZt_Bu58dhKhat_P9FKkoKYQoZU6LicVnlvEuBA-NGrzdaj8qgtVhOdWq03LqsJwiVOGj7nHWwVRhbyc0GAu9gdp6MFHVzv7j8Ae543uo</recordid><startdate>20190124</startdate><enddate>20190124</enddate><creator>Bodnaruk, Andrii V.</creator><creator>Brunhuber, Alexander</creator><creator>Kalita, Viktor M.</creator><creator>Kulyk, Mykola M.</creator><creator>Kurzweil, Peter</creator><creator>Snarskii, Andrei A.</creator><creator>Lozenko, Albert F.</creator><creator>Ryabchenko, Sergey M.</creator><creator>Shamonin, Mikhail</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5637-7526</orcidid></search><sort><creationdate>20190124</creationdate><title>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</title><author>Bodnaruk, Andrii V. ; Brunhuber, Alexander ; Kalita, Viktor M. ; Kulyk, Mykola M. ; Kurzweil, Peter ; Snarskii, Andrei A. ; Lozenko, Albert F. ; Ryabchenko, Sergey M. ; Shamonin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-dc08d55c7e60f0b86de1ba04086a143ac53af95cc369aa6ec958be35d3f9f51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Composite materials</topic><topic>Deformation mechanisms</topic><topic>Elasticity</topic><topic>Elastomers</topic><topic>Experimental methodology</topic><topic>Freezing</topic><topic>Internal deformation</topic><topic>Iron</topic><topic>Isolators</topic><topic>Low temperature</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetization curves</topic><topic>Magnetoactive elastomer</topic><topic>Magnetomechanical coupling</topic><topic>Magnetorheological elastomer</topic><topic>Microparticles</topic><topic>Polydimethylsiloxane</topic><topic>Rigidity</topic><topic>Shear modulus</topic><topic>Temperature effects</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodnaruk, Andrii V.</creatorcontrib><creatorcontrib>Brunhuber, Alexander</creatorcontrib><creatorcontrib>Kalita, Viktor M.</creatorcontrib><creatorcontrib>Kulyk, Mykola M.</creatorcontrib><creatorcontrib>Kurzweil, Peter</creatorcontrib><creatorcontrib>Snarskii, Andrei A.</creatorcontrib><creatorcontrib>Lozenko, Albert F.</creatorcontrib><creatorcontrib>Ryabchenko, Sergey M.</creatorcontrib><creatorcontrib>Shamonin, Mikhail</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodnaruk, Andrii V.</au><au>Brunhuber, Alexander</au><au>Kalita, Viktor M.</au><au>Kulyk, Mykola M.</au><au>Kurzweil, Peter</au><au>Snarskii, Andrei A.</au><au>Lozenko, Albert F.</au><au>Ryabchenko, Sergey M.</au><au>Shamonin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-01-24</date><risdate>2019</risdate><volume>162</volume><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Polydimethylsiloxane based magnetoactive elastomers demonstrate above the melting transition range (e.g. at room temperature) an induced uniaxial magnetic anisotropy, which grows with increasing magnetic field. By freezing a material down to 150 K, displaced iron microparticles are immobilized, so that the magnetic anisotropy can be measured. Magnetic anisotropy “constant” is a consequence of particle displacements and a characteristic of the energy of internal deformations in the polymer matrix. The maximum anisotropy constant of the filling is at least one order of magnitude larger than the shear modulus of the pure elastomer (matrix). In a magnetic field, the gain in the rigidity of the composite material is attributed to the magnetomechanical coupling, which is in turn a source of anisotropy. The concept of effective magnetic field felt by the magnetization allows one to explain the magnetization curve at room temperature from low-temperature measurements. The results can be useful for developing vibration absorbers and isolators.
[Display omitted]
•Magnetic anisotropy induced by a magnetic field is experimentally observed.•To investigate magnetic anisotropy, a sample was frozen in a magnetic field.•Magnetic anisotropy “constant” depends on the magnitude of the magnetic field.•Magnetic anisotropy is a characteristic of internal deformations of the polymer matrix.•Effect of the effective magnetic anisotropy field on the magnetization is found.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2018.12.027</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5637-7526</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2019-01, Vol.162, p.63-72 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2176698427 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Anisotropy Composite materials Deformation mechanisms Elasticity Elastomers Experimental methodology Freezing Internal deformation Iron Isolators Low temperature Magnetic anisotropy Magnetic fields Magnetic properties Magnetism Magnetization Magnetization curves Magnetoactive elastomer Magnetomechanical coupling Magnetorheological elastomer Microparticles Polydimethylsiloxane Rigidity Shear modulus Temperature effects Vibration |
title | Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20anisotropy%20in%20magnetoactive%20elastomers,%20enabled%20by%20matrix%20elasticity&rft.jtitle=Polymer%20(Guilford)&rft.au=Bodnaruk,%20Andrii%20V.&rft.date=2019-01-24&rft.volume=162&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2018.12.027&rft_dat=%3Cproquest_cross%3E2176698427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176698427&rft_id=info:pmid/&rft_els_id=S0032386118311418&rfr_iscdi=true |