Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions
A great challenge of toner design is to improve the storage stability and energy saving. The reciprocal characteristics of endowing high glass transition temperature (Tg) while low fusing temperature (Tf) are essential. In this study, we investigate the influence of hydrogen bonding interactions on...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2019-01, Vol.161, p.190-196 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | |
container_start_page | 190 |
container_title | Polymer (Guilford) |
container_volume | 161 |
creator | Lin, Yu Xu, Cheng Guan, Aiguo Wu, Guozhang |
description | A great challenge of toner design is to improve the storage stability and energy saving. The reciprocal characteristics of endowing high glass transition temperature (Tg) while low fusing temperature (Tf) are essential. In this study, we investigate the influence of hydrogen bonding interactions on Tg and temperature-dependent viscoelastic of styrene/ethyl acrylate random copolymers [P(St-co-EA)] with different ratios of St/EA by the incorporation of small molecule 4,4′-thio-bis(6-tert-butyl-m-methyl phenol) (AO300). The results of FTIR spectra confirm the intermolecular hydrogen bonding between the carbonyl groups of acrylic copolymers and hydroxyl groups of AO300 small molecules. With increasing AO300 content, Tg of the hybrids increases due to the increased number of hydrogen bonding. The universal scaling law of temperature-dependent viscoelastic behavior is indeed valid for pure acrylic copolymers in both the Arrhenius and non-Arrhenius regions. However, the temperature-dependent viscoelastic behaviors of the hybrids are strongly influenced by the ratio of St/EA and AO300 content, showing positive or negative deviations from the universal plot for high and low ratio of St/EA copolymer based hybrids, respectively. The systematic deviations are greater with increasing small molecule content. Such irregular deviations can be attributed to either the disassociation of hydrogen bonding or plasticizing effect by the introduction of AO300. The P(St-co-EA)/AO300 hybrids possessing high Tg and low Tf provides a promising candidate of toner binder resin to realize the storage stability and energy efficient.
[Display omitted]
•Antioxidant small molecules are added to introduce hydrogen bonding to enhance Tg.•Viscosity is lower at high temperatures with increasing small molecule loadings.•The hybrids show irregular temperature-dependent viscoelastic behaviors.•The hybrids provide a promising candidate of toner binder resin. |
doi_str_mv | 10.1016/j.polymer.2018.12.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176697619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386118311303</els_id><sourcerecordid>2176697619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-e9e3e212ccf58c02e7ba6b173eb59364abd68ccf302d73abb88f6a8a914851103</originalsourceid><addsrcrecordid>eNqFUE1r3DAUFKGFbNP-hIKgZzt60lqWT6WENikEcknOQh_PWS1ey5W0C4b--GrZvff04M28mTdDyFdgLTCQ9_t2idN6wNRyBqoF3jLe3ZANqF40nA_wgWwYE7wRSsIt-ZTznrFK4dsN-ftqwhRTmN9p2SEteFgwmXJM2HhccPY4F3oK2UWcTC7BUYs7cwox0ThS49I61Z2L1w8ytSsNc0nRH91ZdLf6FN9xpjbO_ryoYDVwJcQ5fyYfRzNl_HKdd-Tt18_Xh6fm-eXx98OP58ZteygNDiiQA3du7JRjHHtrpIVeoO0GIbfGeqkqKBj3vTDWKjVKo8wAW9UBMHFHvl10lxT_HDEXvY_HNFdLzaGXcuglDJXVXVguxZwTjnpJ4WDSqoHpc9F6r68x9bloDVzXFuvd98sd1ginUNHsAs4OfUjoivYx_EfhH8gIjgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176697619</pqid></control><display><type>article</type><title>Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Yu ; Xu, Cheng ; Guan, Aiguo ; Wu, Guozhang</creator><creatorcontrib>Lin, Yu ; Xu, Cheng ; Guan, Aiguo ; Wu, Guozhang</creatorcontrib><description>A great challenge of toner design is to improve the storage stability and energy saving. The reciprocal characteristics of endowing high glass transition temperature (Tg) while low fusing temperature (Tf) are essential. In this study, we investigate the influence of hydrogen bonding interactions on Tg and temperature-dependent viscoelastic of styrene/ethyl acrylate random copolymers [P(St-co-EA)] with different ratios of St/EA by the incorporation of small molecule 4,4′-thio-bis(6-tert-butyl-m-methyl phenol) (AO300). The results of FTIR spectra confirm the intermolecular hydrogen bonding between the carbonyl groups of acrylic copolymers and hydroxyl groups of AO300 small molecules. With increasing AO300 content, Tg of the hybrids increases due to the increased number of hydrogen bonding. The universal scaling law of temperature-dependent viscoelastic behavior is indeed valid for pure acrylic copolymers in both the Arrhenius and non-Arrhenius regions. However, the temperature-dependent viscoelastic behaviors of the hybrids are strongly influenced by the ratio of St/EA and AO300 content, showing positive or negative deviations from the universal plot for high and low ratio of St/EA copolymer based hybrids, respectively. The systematic deviations are greater with increasing small molecule content. Such irregular deviations can be attributed to either the disassociation of hydrogen bonding or plasticizing effect by the introduction of AO300. The P(St-co-EA)/AO300 hybrids possessing high Tg and low Tf provides a promising candidate of toner binder resin to realize the storage stability and energy efficient.
[Display omitted]
•Antioxidant small molecules are added to introduce hydrogen bonding to enhance Tg.•Viscosity is lower at high temperatures with increasing small molecule loadings.•The hybrids show irregular temperature-dependent viscoelastic behaviors.•The hybrids provide a promising candidate of toner binder resin.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2018.12.025</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbonyl groups ; Carbonyls ; Chemical bonds ; Copolymers ; Energy conservation ; Energy efficiency ; Energy storage ; Flow activation energy ; Glass transition ; Glass transition temperature ; Hybrids ; Hydrogen ; Hydrogen bonding ; Hydroxyl groups ; Phenols ; Scaling ; Scaling laws ; Shelf life ; Storage stability ; Styrene ; Temperature ; Temperature dependence ; Temperature effects ; Transition temperatures ; Universal scaling law ; Viscoelastic behavior ; Viscoelasticity</subject><ispartof>Polymer (Guilford), 2019-01, Vol.161, p.190-196</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 14, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-e9e3e212ccf58c02e7ba6b173eb59364abd68ccf302d73abb88f6a8a914851103</citedby><cites>FETCH-LOGICAL-c471t-e9e3e212ccf58c02e7ba6b173eb59364abd68ccf302d73abb88f6a8a914851103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386118311303$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Guan, Aiguo</creatorcontrib><creatorcontrib>Wu, Guozhang</creatorcontrib><title>Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions</title><title>Polymer (Guilford)</title><description>A great challenge of toner design is to improve the storage stability and energy saving. The reciprocal characteristics of endowing high glass transition temperature (Tg) while low fusing temperature (Tf) are essential. In this study, we investigate the influence of hydrogen bonding interactions on Tg and temperature-dependent viscoelastic of styrene/ethyl acrylate random copolymers [P(St-co-EA)] with different ratios of St/EA by the incorporation of small molecule 4,4′-thio-bis(6-tert-butyl-m-methyl phenol) (AO300). The results of FTIR spectra confirm the intermolecular hydrogen bonding between the carbonyl groups of acrylic copolymers and hydroxyl groups of AO300 small molecules. With increasing AO300 content, Tg of the hybrids increases due to the increased number of hydrogen bonding. The universal scaling law of temperature-dependent viscoelastic behavior is indeed valid for pure acrylic copolymers in both the Arrhenius and non-Arrhenius regions. However, the temperature-dependent viscoelastic behaviors of the hybrids are strongly influenced by the ratio of St/EA and AO300 content, showing positive or negative deviations from the universal plot for high and low ratio of St/EA copolymer based hybrids, respectively. The systematic deviations are greater with increasing small molecule content. Such irregular deviations can be attributed to either the disassociation of hydrogen bonding or plasticizing effect by the introduction of AO300. The P(St-co-EA)/AO300 hybrids possessing high Tg and low Tf provides a promising candidate of toner binder resin to realize the storage stability and energy efficient.
[Display omitted]
•Antioxidant small molecules are added to introduce hydrogen bonding to enhance Tg.•Viscosity is lower at high temperatures with increasing small molecule loadings.•The hybrids show irregular temperature-dependent viscoelastic behaviors.•The hybrids provide a promising candidate of toner binder resin.</description><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Chemical bonds</subject><subject>Copolymers</subject><subject>Energy conservation</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Flow activation energy</subject><subject>Glass transition</subject><subject>Glass transition temperature</subject><subject>Hybrids</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydroxyl groups</subject><subject>Phenols</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Shelf life</subject><subject>Storage stability</subject><subject>Styrene</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Transition temperatures</subject><subject>Universal scaling law</subject><subject>Viscoelastic behavior</subject><subject>Viscoelasticity</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1r3DAUFKGFbNP-hIKgZzt60lqWT6WENikEcknOQh_PWS1ey5W0C4b--GrZvff04M28mTdDyFdgLTCQ9_t2idN6wNRyBqoF3jLe3ZANqF40nA_wgWwYE7wRSsIt-ZTznrFK4dsN-ftqwhRTmN9p2SEteFgwmXJM2HhccPY4F3oK2UWcTC7BUYs7cwox0ThS49I61Z2L1w8ytSsNc0nRH91ZdLf6FN9xpjbO_ryoYDVwJcQ5fyYfRzNl_HKdd-Tt18_Xh6fm-eXx98OP58ZteygNDiiQA3du7JRjHHtrpIVeoO0GIbfGeqkqKBj3vTDWKjVKo8wAW9UBMHFHvl10lxT_HDEXvY_HNFdLzaGXcuglDJXVXVguxZwTjnpJ4WDSqoHpc9F6r68x9bloDVzXFuvd98sd1ginUNHsAs4OfUjoivYx_EfhH8gIjgI</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Lin, Yu</creator><creator>Xu, Cheng</creator><creator>Guan, Aiguo</creator><creator>Wu, Guozhang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190114</creationdate><title>Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions</title><author>Lin, Yu ; Xu, Cheng ; Guan, Aiguo ; Wu, Guozhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-e9e3e212ccf58c02e7ba6b173eb59364abd68ccf302d73abb88f6a8a914851103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Chemical bonds</topic><topic>Copolymers</topic><topic>Energy conservation</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Flow activation energy</topic><topic>Glass transition</topic><topic>Glass transition temperature</topic><topic>Hybrids</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydroxyl groups</topic><topic>Phenols</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Shelf life</topic><topic>Storage stability</topic><topic>Styrene</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Transition temperatures</topic><topic>Universal scaling law</topic><topic>Viscoelastic behavior</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Guan, Aiguo</creatorcontrib><creatorcontrib>Wu, Guozhang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yu</au><au>Xu, Cheng</au><au>Guan, Aiguo</au><au>Wu, Guozhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-01-14</date><risdate>2019</risdate><volume>161</volume><spage>190</spage><epage>196</epage><pages>190-196</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>A great challenge of toner design is to improve the storage stability and energy saving. The reciprocal characteristics of endowing high glass transition temperature (Tg) while low fusing temperature (Tf) are essential. In this study, we investigate the influence of hydrogen bonding interactions on Tg and temperature-dependent viscoelastic of styrene/ethyl acrylate random copolymers [P(St-co-EA)] with different ratios of St/EA by the incorporation of small molecule 4,4′-thio-bis(6-tert-butyl-m-methyl phenol) (AO300). The results of FTIR spectra confirm the intermolecular hydrogen bonding between the carbonyl groups of acrylic copolymers and hydroxyl groups of AO300 small molecules. With increasing AO300 content, Tg of the hybrids increases due to the increased number of hydrogen bonding. The universal scaling law of temperature-dependent viscoelastic behavior is indeed valid for pure acrylic copolymers in both the Arrhenius and non-Arrhenius regions. However, the temperature-dependent viscoelastic behaviors of the hybrids are strongly influenced by the ratio of St/EA and AO300 content, showing positive or negative deviations from the universal plot for high and low ratio of St/EA copolymer based hybrids, respectively. The systematic deviations are greater with increasing small molecule content. Such irregular deviations can be attributed to either the disassociation of hydrogen bonding or plasticizing effect by the introduction of AO300. The P(St-co-EA)/AO300 hybrids possessing high Tg and low Tf provides a promising candidate of toner binder resin to realize the storage stability and energy efficient.
[Display omitted]
•Antioxidant small molecules are added to introduce hydrogen bonding to enhance Tg.•Viscosity is lower at high temperatures with increasing small molecule loadings.•The hybrids show irregular temperature-dependent viscoelastic behaviors.•The hybrids provide a promising candidate of toner binder resin.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2018.12.025</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2019-01, Vol.161, p.190-196 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2176697619 |
source | Elsevier ScienceDirect Journals |
subjects | Carbonyl groups Carbonyls Chemical bonds Copolymers Energy conservation Energy efficiency Energy storage Flow activation energy Glass transition Glass transition temperature Hybrids Hydrogen Hydrogen bonding Hydroxyl groups Phenols Scaling Scaling laws Shelf life Storage stability Styrene Temperature Temperature dependence Temperature effects Transition temperatures Universal scaling law Viscoelastic behavior Viscoelasticity |
title | Tailoring the temperature-dependent viscoelastic behavior of acrylic copolymers by introducing hydrogen bonding interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20temperature-dependent%20viscoelastic%20behavior%20of%20acrylic%20copolymers%20by%20introducing%20hydrogen%20bonding%20interactions&rft.jtitle=Polymer%20(Guilford)&rft.au=Lin,%20Yu&rft.date=2019-01-14&rft.volume=161&rft.spage=190&rft.epage=196&rft.pages=190-196&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2018.12.025&rft_dat=%3Cproquest_cross%3E2176697619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176697619&rft_id=info:pmid/&rft_els_id=S0032386118311303&rfr_iscdi=true |