Classifying Convex Bodies by their Contact and Intersection Graphs
Suppose that \(A\) is a convex body in the plane and that \(A_1,\dots,A_n\) are translates of \(A\). Such translates give rise to an intersection graph of \(A\), \(G=(V,E)\), with vertices \(V=\{1,\dots,n\}\) and edges \(E=\{uv\mid A_u\cap A_v\neq \emptyset\}\). The subgraph \(G'=(V, E')\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aamand, Anders Abrahamsen, Mikkel Jakob Bæk Tejs Knudsen Reichstein Rasmussen, Peter Michael |
description | Suppose that \(A\) is a convex body in the plane and that \(A_1,\dots,A_n\) are translates of \(A\). Such translates give rise to an intersection graph of \(A\), \(G=(V,E)\), with vertices \(V=\{1,\dots,n\}\) and edges \(E=\{uv\mid A_u\cap A_v\neq \emptyset\}\). The subgraph \(G'=(V, E')\) satisfying that \(E'\subset E\) is the set of edges \(uv\) for which the interiors of \(A_u\) and \(A_v\) are disjoint is a unit distance graph of \(A\). If furthermore \(G'=G\), i.e., if the interiors of \(A_u\) and \(A_v\) are disjoint whenever \(u\neq v\), then \(G\) is a contact graph of \(A\). In this paper we study which pairs of convex bodies have the same contact, unit distance, or intersection graphs. We say that two convex bodies \(A\) and \(B\) are equivalent if there exists a linear transformation \(B'\) of \(B\) such that for any slope, the longest line segments with that slope contained in \(A\) and \(B'\), respectively, are equally long. For a broad class of convex bodies, including all strictly convex bodies and linear transformations of regular polygons, we show that the contact graphs of \(A\) and \(B\) are the same if and only if \(A\) and \(B\) are equivalent. We prove the same statement for unit distance and intersection graphs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2176588842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176588842</sourcerecordid><originalsourceid>FETCH-proquest_journals_21765888423</originalsourceid><addsrcrecordid>eNqNjs0KgkAURocgSMp3uNBa0JlGXSv97dvLpNcckRmbO0a-fQY9QKsPzjmLb8UCLkQS5QfONywk6uM45mnGpRQBK8pBEel21uYBpTUvfENhG40E9xl8h9p9sVe1B2UauBqPjrD22ho4OzV2tGPrVg2E4W-3bH863spLNDr7nJB81dvJmUVVPMlSmefLFfFf9QGtZjnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176588842</pqid></control><display><type>article</type><title>Classifying Convex Bodies by their Contact and Intersection Graphs</title><source>Free E- Journals</source><creator>Aamand, Anders ; Abrahamsen, Mikkel ; Jakob Bæk Tejs Knudsen ; Reichstein Rasmussen, Peter Michael</creator><creatorcontrib>Aamand, Anders ; Abrahamsen, Mikkel ; Jakob Bæk Tejs Knudsen ; Reichstein Rasmussen, Peter Michael</creatorcontrib><description>Suppose that \(A\) is a convex body in the plane and that \(A_1,\dots,A_n\) are translates of \(A\). Such translates give rise to an intersection graph of \(A\), \(G=(V,E)\), with vertices \(V=\{1,\dots,n\}\) and edges \(E=\{uv\mid A_u\cap A_v\neq \emptyset\}\). The subgraph \(G'=(V, E')\) satisfying that \(E'\subset E\) is the set of edges \(uv\) for which the interiors of \(A_u\) and \(A_v\) are disjoint is a unit distance graph of \(A\). If furthermore \(G'=G\), i.e., if the interiors of \(A_u\) and \(A_v\) are disjoint whenever \(u\neq v\), then \(G\) is a contact graph of \(A\). In this paper we study which pairs of convex bodies have the same contact, unit distance, or intersection graphs. We say that two convex bodies \(A\) and \(B\) are equivalent if there exists a linear transformation \(B'\) of \(B\) such that for any slope, the longest line segments with that slope contained in \(A\) and \(B'\), respectively, are equally long. For a broad class of convex bodies, including all strictly convex bodies and linear transformations of regular polygons, we show that the contact graphs of \(A\) and \(B\) are the same if and only if \(A\) and \(B\) are equivalent. We prove the same statement for unit distance and intersection graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Equivalence ; Graph theory ; Graphs ; Linear transformations ; Owls</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Aamand, Anders</creatorcontrib><creatorcontrib>Abrahamsen, Mikkel</creatorcontrib><creatorcontrib>Jakob Bæk Tejs Knudsen</creatorcontrib><creatorcontrib>Reichstein Rasmussen, Peter Michael</creatorcontrib><title>Classifying Convex Bodies by their Contact and Intersection Graphs</title><title>arXiv.org</title><description>Suppose that \(A\) is a convex body in the plane and that \(A_1,\dots,A_n\) are translates of \(A\). Such translates give rise to an intersection graph of \(A\), \(G=(V,E)\), with vertices \(V=\{1,\dots,n\}\) and edges \(E=\{uv\mid A_u\cap A_v\neq \emptyset\}\). The subgraph \(G'=(V, E')\) satisfying that \(E'\subset E\) is the set of edges \(uv\) for which the interiors of \(A_u\) and \(A_v\) are disjoint is a unit distance graph of \(A\). If furthermore \(G'=G\), i.e., if the interiors of \(A_u\) and \(A_v\) are disjoint whenever \(u\neq v\), then \(G\) is a contact graph of \(A\). In this paper we study which pairs of convex bodies have the same contact, unit distance, or intersection graphs. We say that two convex bodies \(A\) and \(B\) are equivalent if there exists a linear transformation \(B'\) of \(B\) such that for any slope, the longest line segments with that slope contained in \(A\) and \(B'\), respectively, are equally long. For a broad class of convex bodies, including all strictly convex bodies and linear transformations of regular polygons, we show that the contact graphs of \(A\) and \(B\) are the same if and only if \(A\) and \(B\) are equivalent. We prove the same statement for unit distance and intersection graphs.</description><subject>Apexes</subject><subject>Equivalence</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear transformations</subject><subject>Owls</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KgkAURocgSMp3uNBa0JlGXSv97dvLpNcckRmbO0a-fQY9QKsPzjmLb8UCLkQS5QfONywk6uM45mnGpRQBK8pBEel21uYBpTUvfENhG40E9xl8h9p9sVe1B2UauBqPjrD22ho4OzV2tGPrVg2E4W-3bH863spLNDr7nJB81dvJmUVVPMlSmefLFfFf9QGtZjnE</recordid><startdate>20190205</startdate><enddate>20190205</enddate><creator>Aamand, Anders</creator><creator>Abrahamsen, Mikkel</creator><creator>Jakob Bæk Tejs Knudsen</creator><creator>Reichstein Rasmussen, Peter Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190205</creationdate><title>Classifying Convex Bodies by their Contact and Intersection Graphs</title><author>Aamand, Anders ; Abrahamsen, Mikkel ; Jakob Bæk Tejs Knudsen ; Reichstein Rasmussen, Peter Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21765888423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Equivalence</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear transformations</topic><topic>Owls</topic><toplevel>online_resources</toplevel><creatorcontrib>Aamand, Anders</creatorcontrib><creatorcontrib>Abrahamsen, Mikkel</creatorcontrib><creatorcontrib>Jakob Bæk Tejs Knudsen</creatorcontrib><creatorcontrib>Reichstein Rasmussen, Peter Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aamand, Anders</au><au>Abrahamsen, Mikkel</au><au>Jakob Bæk Tejs Knudsen</au><au>Reichstein Rasmussen, Peter Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classifying Convex Bodies by their Contact and Intersection Graphs</atitle><jtitle>arXiv.org</jtitle><date>2019-02-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Suppose that \(A\) is a convex body in the plane and that \(A_1,\dots,A_n\) are translates of \(A\). Such translates give rise to an intersection graph of \(A\), \(G=(V,E)\), with vertices \(V=\{1,\dots,n\}\) and edges \(E=\{uv\mid A_u\cap A_v\neq \emptyset\}\). The subgraph \(G'=(V, E')\) satisfying that \(E'\subset E\) is the set of edges \(uv\) for which the interiors of \(A_u\) and \(A_v\) are disjoint is a unit distance graph of \(A\). If furthermore \(G'=G\), i.e., if the interiors of \(A_u\) and \(A_v\) are disjoint whenever \(u\neq v\), then \(G\) is a contact graph of \(A\). In this paper we study which pairs of convex bodies have the same contact, unit distance, or intersection graphs. We say that two convex bodies \(A\) and \(B\) are equivalent if there exists a linear transformation \(B'\) of \(B\) such that for any slope, the longest line segments with that slope contained in \(A\) and \(B'\), respectively, are equally long. For a broad class of convex bodies, including all strictly convex bodies and linear transformations of regular polygons, we show that the contact graphs of \(A\) and \(B\) are the same if and only if \(A\) and \(B\) are equivalent. We prove the same statement for unit distance and intersection graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2176588842 |
source | Free E- Journals |
subjects | Apexes Equivalence Graph theory Graphs Linear transformations Owls |
title | Classifying Convex Bodies by their Contact and Intersection Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classifying%20Convex%20Bodies%20by%20their%20Contact%20and%20Intersection%20Graphs&rft.jtitle=arXiv.org&rft.au=Aamand,%20Anders&rft.date=2019-02-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2176588842%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176588842&rft_id=info:pmid/&rfr_iscdi=true |