Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems

Summary In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2019-03, Vol.117 (11), p.1079-1116
Hauptverfasser: Giovanis, D.G., Shields, M.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1116
container_issue 11
container_start_page 1079
container_title International journal for numerical methods in engineering
container_volume 117
creator Giovanis, D.G.
Shields, M.D.
description Summary In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.
doi_str_mv 10.1002/nme.5992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176540012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176540012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqUgcQRLbNik2I6NkyWqyo9UYANsLcd-Ia6SuNipSnccgTNyEtyWLasnzXwavRmEzimZUELYVd_BRJQlO0AjSkqZEUbkIRolq8xEWdBjdBLjghBKBclHyL3p4HRv4Ofru9IRLI6uW7bwiePgTaPj4Aw2vm290YPzPV67ocGdt9BiHywEHMCuzM6qfcCNe29SlHUd9DGJusVxEwfo4ik6qnUb4ezvjtHr7exlep_Nn-8epjfzzLAyZ1nFOfCKU5FXrKpZLa3mQkButawBoNaWyaqmXBZU5ryQRvDSiLykshAGUqcxutjnLoP_WEEc1MKvQnokKkblteCpO0vU5Z4ywccYoFbL4DodNooStR1SpSHVdsiEZnt07VrY_Mupp8fZjv8FaAx4Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176540012</pqid></control><display><type>article</type><title>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giovanis, D.G. ; Shields, M.D.</creator><creatorcontrib>Giovanis, D.G. ; Shields, M.D.</creatorcontrib><description>Summary In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5992</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive systems ; Anisotropy ; Collocation methods ; higher‐order singular value decomposition ; Mathematical models ; Matrix algebra ; Matrix methods ; Methods ; Model reduction ; multi‐element collocation ; polynomial chaos ; Polynomials ; reduced‐order model ; simplex stochastic collocation ; Singular value decomposition ; Stochastic systems ; Tensors ; Variance</subject><ispartof>International journal for numerical methods in engineering, 2019-03, Vol.117 (11), p.1079-1116</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</citedby><cites>FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</cites><orcidid>0000-0003-1370-6785 ; 0000-0003-2272-2584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5992$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5992$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Giovanis, D.G.</creatorcontrib><creatorcontrib>Shields, M.D.</creatorcontrib><title>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</title><title>International journal for numerical methods in engineering</title><description>Summary In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.</description><subject>Adaptive systems</subject><subject>Anisotropy</subject><subject>Collocation methods</subject><subject>higher‐order singular value decomposition</subject><subject>Mathematical models</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Model reduction</subject><subject>multi‐element collocation</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>reduced‐order model</subject><subject>simplex stochastic collocation</subject><subject>Singular value decomposition</subject><subject>Stochastic systems</subject><subject>Tensors</subject><subject>Variance</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqUgcQRLbNik2I6NkyWqyo9UYANsLcd-Ia6SuNipSnccgTNyEtyWLasnzXwavRmEzimZUELYVd_BRJQlO0AjSkqZEUbkIRolq8xEWdBjdBLjghBKBclHyL3p4HRv4Ofru9IRLI6uW7bwiePgTaPj4Aw2vm290YPzPV67ocGdt9BiHywEHMCuzM6qfcCNe29SlHUd9DGJusVxEwfo4ik6qnUb4ezvjtHr7exlep_Nn-8epjfzzLAyZ1nFOfCKU5FXrKpZLa3mQkButawBoNaWyaqmXBZU5ryQRvDSiLykshAGUqcxutjnLoP_WEEc1MKvQnokKkblteCpO0vU5Z4ywccYoFbL4DodNooStR1SpSHVdsiEZnt07VrY_Mupp8fZjv8FaAx4Rw</recordid><startdate>20190316</startdate><enddate>20190316</enddate><creator>Giovanis, D.G.</creator><creator>Shields, M.D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1370-6785</orcidid><orcidid>https://orcid.org/0000-0003-2272-2584</orcidid></search><sort><creationdate>20190316</creationdate><title>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</title><author>Giovanis, D.G. ; Shields, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Anisotropy</topic><topic>Collocation methods</topic><topic>higher‐order singular value decomposition</topic><topic>Mathematical models</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Model reduction</topic><topic>multi‐element collocation</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>reduced‐order model</topic><topic>simplex stochastic collocation</topic><topic>Singular value decomposition</topic><topic>Stochastic systems</topic><topic>Tensors</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giovanis, D.G.</creatorcontrib><creatorcontrib>Shields, M.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giovanis, D.G.</au><au>Shields, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2019-03-16</date><risdate>2019</risdate><volume>117</volume><issue>11</issue><spage>1079</spage><epage>1116</epage><pages>1079-1116</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5992</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1370-6785</orcidid><orcidid>https://orcid.org/0000-0003-2272-2584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2019-03, Vol.117 (11), p.1079-1116
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2176540012
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive systems
Anisotropy
Collocation methods
higher‐order singular value decomposition
Mathematical models
Matrix algebra
Matrix methods
Methods
Model reduction
multi‐element collocation
polynomial chaos
Polynomials
reduced‐order model
simplex stochastic collocation
Singular value decomposition
Stochastic systems
Tensors
Variance
title Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance%E2%80%90based%20simplex%20stochastic%20collocation%20with%20model%20order%20reduction%20for%20high%E2%80%90dimensional%20systems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Giovanis,%20D.G.&rft.date=2019-03-16&rft.volume=117&rft.issue=11&rft.spage=1079&rft.epage=1116&rft.pages=1079-1116&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5992&rft_dat=%3Cproquest_cross%3E2176540012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176540012&rft_id=info:pmid/&rfr_iscdi=true