Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems
Summary In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very h...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2019-03, Vol.117 (11), p.1079-1116 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1116 |
---|---|
container_issue | 11 |
container_start_page | 1079 |
container_title | International journal for numerical methods in engineering |
container_volume | 117 |
creator | Giovanis, D.G. Shields, M.D. |
description | Summary
In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods. |
doi_str_mv | 10.1002/nme.5992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176540012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176540012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqUgcQRLbNik2I6NkyWqyo9UYANsLcd-Ia6SuNipSnccgTNyEtyWLasnzXwavRmEzimZUELYVd_BRJQlO0AjSkqZEUbkIRolq8xEWdBjdBLjghBKBclHyL3p4HRv4Ofru9IRLI6uW7bwiePgTaPj4Aw2vm290YPzPV67ocGdt9BiHywEHMCuzM6qfcCNe29SlHUd9DGJusVxEwfo4ik6qnUb4ezvjtHr7exlep_Nn-8epjfzzLAyZ1nFOfCKU5FXrKpZLa3mQkButawBoNaWyaqmXBZU5ryQRvDSiLykshAGUqcxutjnLoP_WEEc1MKvQnokKkblteCpO0vU5Z4ywccYoFbL4DodNooStR1SpSHVdsiEZnt07VrY_Mupp8fZjv8FaAx4Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176540012</pqid></control><display><type>article</type><title>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giovanis, D.G. ; Shields, M.D.</creator><creatorcontrib>Giovanis, D.G. ; Shields, M.D.</creatorcontrib><description>Summary
In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5992</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive systems ; Anisotropy ; Collocation methods ; higher‐order singular value decomposition ; Mathematical models ; Matrix algebra ; Matrix methods ; Methods ; Model reduction ; multi‐element collocation ; polynomial chaos ; Polynomials ; reduced‐order model ; simplex stochastic collocation ; Singular value decomposition ; Stochastic systems ; Tensors ; Variance</subject><ispartof>International journal for numerical methods in engineering, 2019-03, Vol.117 (11), p.1079-1116</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</citedby><cites>FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</cites><orcidid>0000-0003-1370-6785 ; 0000-0003-2272-2584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5992$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5992$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Giovanis, D.G.</creatorcontrib><creatorcontrib>Shields, M.D.</creatorcontrib><title>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</title><title>International journal for numerical methods in engineering</title><description>Summary
In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.</description><subject>Adaptive systems</subject><subject>Anisotropy</subject><subject>Collocation methods</subject><subject>higher‐order singular value decomposition</subject><subject>Mathematical models</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Methods</subject><subject>Model reduction</subject><subject>multi‐element collocation</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>reduced‐order model</subject><subject>simplex stochastic collocation</subject><subject>Singular value decomposition</subject><subject>Stochastic systems</subject><subject>Tensors</subject><subject>Variance</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqUgcQRLbNik2I6NkyWqyo9UYANsLcd-Ia6SuNipSnccgTNyEtyWLasnzXwavRmEzimZUELYVd_BRJQlO0AjSkqZEUbkIRolq8xEWdBjdBLjghBKBclHyL3p4HRv4Ofru9IRLI6uW7bwiePgTaPj4Aw2vm290YPzPV67ocGdt9BiHywEHMCuzM6qfcCNe29SlHUd9DGJusVxEwfo4ik6qnUb4ezvjtHr7exlep_Nn-8epjfzzLAyZ1nFOfCKU5FXrKpZLa3mQkButawBoNaWyaqmXBZU5ryQRvDSiLykshAGUqcxutjnLoP_WEEc1MKvQnokKkblteCpO0vU5Z4ywccYoFbL4DodNooStR1SpSHVdsiEZnt07VrY_Mupp8fZjv8FaAx4Rw</recordid><startdate>20190316</startdate><enddate>20190316</enddate><creator>Giovanis, D.G.</creator><creator>Shields, M.D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1370-6785</orcidid><orcidid>https://orcid.org/0000-0003-2272-2584</orcidid></search><sort><creationdate>20190316</creationdate><title>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</title><author>Giovanis, D.G. ; Shields, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-b44e4b4153b2bf2f7da455e3da7feeefad27bf1478173487c549c5391785ce503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Anisotropy</topic><topic>Collocation methods</topic><topic>higher‐order singular value decomposition</topic><topic>Mathematical models</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Methods</topic><topic>Model reduction</topic><topic>multi‐element collocation</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>reduced‐order model</topic><topic>simplex stochastic collocation</topic><topic>Singular value decomposition</topic><topic>Stochastic systems</topic><topic>Tensors</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giovanis, D.G.</creatorcontrib><creatorcontrib>Shields, M.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giovanis, D.G.</au><au>Shields, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2019-03-16</date><risdate>2019</risdate><volume>117</volume><issue>11</issue><spage>1079</spage><epage>1116</epage><pages>1079-1116</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
In this work, an adaptive simplex stochastic collocation method is introduced in which sample refinement is informed by variability in the solution of the system. The proposed method is based on the concept of multi‐element stochastic collocation methods and is capable of dealing with very high‐dimensional models whose solutions are expressed as a vector, a matrix, or a tensor. The method leverages random samples to create a multi‐element polynomial chaos surrogate model that incorporates local anisotropy in the refinement, informed by the variance of the estimated solution. This feature makes it beneficial for strongly nonlinear and/or discontinuous problems with correlated non‐Gaussian uncertainties. To solve large systems, a reduced‐order model (ROM) of the high‐dimensional response is identified using singular value decomposition (higher‐order SVD for matrix/tensor solutions) and polynomial chaos is used to interpolate the ROM. The method is applied to several stochastic systems of varying type of response (scalar/vector/matrix) and it shows considerable improvement in performance compared to existing simplex stochastic collocation methods and adaptive sparse grid collocation methods.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5992</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1370-6785</orcidid><orcidid>https://orcid.org/0000-0003-2272-2584</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2019-03, Vol.117 (11), p.1079-1116 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2176540012 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive systems Anisotropy Collocation methods higher‐order singular value decomposition Mathematical models Matrix algebra Matrix methods Methods Model reduction multi‐element collocation polynomial chaos Polynomials reduced‐order model simplex stochastic collocation Singular value decomposition Stochastic systems Tensors Variance |
title | Variance‐based simplex stochastic collocation with model order reduction for high‐dimensional systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance%E2%80%90based%20simplex%20stochastic%20collocation%20with%20model%20order%20reduction%20for%20high%E2%80%90dimensional%20systems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Giovanis,%20D.G.&rft.date=2019-03-16&rft.volume=117&rft.issue=11&rft.spage=1079&rft.epage=1116&rft.pages=1079-1116&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5992&rft_dat=%3Cproquest_cross%3E2176540012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176540012&rft_id=info:pmid/&rfr_iscdi=true |