A Generalized Quasi-MMSE Controller for Run-to-Run Dynamic Models

This study proposes a generalized quasi-minimum mean square error (qMMSE) controller for implementing a run-to-run process control where the process input-output relationship follows a general-order dynamical model with added noise. The expression of the process output, the long-term stability condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2017-07, Vol.59 (3), p.381-390
Hauptverfasser: Tseng, Sheng-Tsaing, Chen, Pei-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 3
container_start_page 381
container_title Technometrics
container_volume 59
creator Tseng, Sheng-Tsaing
Chen, Pei-Yu
description This study proposes a generalized quasi-minimum mean square error (qMMSE) controller for implementing a run-to-run process control where the process input-output relationship follows a general-order dynamical model with added noise. The expression of the process output, the long-term stability conditions and the optimal discount factor of this controller are derived analytically. Furthermore, we use the proposed second-order dynamical model to illustrate the effects of mis-identification of the process I-O model on the process total mean square error (TMSE). Via a comprehensive simulation study, the model demonstrates that the TMSE may inflate by more than 150% if a second-order dynamical model with moderately large carryover effects is wrongly identified as that of a first-order model. This means that the effects of mis-identification of the process I-O model on the process total mean square error (TMSE) is not negligible for implementing a dynamic run-to-run (RTR) process control. Supplementary materials for this article are available online.
doi_str_mv 10.1080/00401706.2016.1228547
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2176252627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44869182</jstor_id><sourcerecordid>44869182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-81f9d4d89d98501340659eca90b71e0f51ffa8e96a0e0ce334b90d01adb3cf6e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_oTDgeurNY_LYWWqtgkV8rUM6SWDKdFKTGaT-eqdMdenqLs537oEPoQmGKQYJNwAMsAA-JYD5FBMiCyZO0AgXVOREEHqKRgcmP0Dn6CKlDQCmRIoRms2ypWtcNHX17Wz20plU5avV2yKbh6aNoa5dzHyI2WvX5G3I-5Pd7RuzrcpsFayr0yU686ZO7up4x-jjfvE-f8ifnpeP89lTXjIQbS6xV5ZZqaySRb_OgBfKlUbBWmAHvsDeG-kUN-CgdJSytQIL2Ng1LT13dIyuh7-7GD47l1q9CV1s-klNsOCkIJyInioGqowhpei83sVqa-JeY9AHW_rXlj7Y0kdbfW8y9DapDfGvxJjkCkvS57dDXjW9ja35CrG2ujX7OkQfTVNWSdP_J34AzDp4ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176252627</pqid></control><display><type>article</type><title>A Generalized Quasi-MMSE Controller for Run-to-Run Dynamic Models</title><source>JSTOR Mathematics and Statistics</source><source>Jstor Complete Legacy</source><creator>Tseng, Sheng-Tsaing ; Chen, Pei-Yu</creator><creatorcontrib>Tseng, Sheng-Tsaing ; Chen, Pei-Yu</creatorcontrib><description>This study proposes a generalized quasi-minimum mean square error (qMMSE) controller for implementing a run-to-run process control where the process input-output relationship follows a general-order dynamical model with added noise. The expression of the process output, the long-term stability conditions and the optimal discount factor of this controller are derived analytically. Furthermore, we use the proposed second-order dynamical model to illustrate the effects of mis-identification of the process I-O model on the process total mean square error (TMSE). Via a comprehensive simulation study, the model demonstrates that the TMSE may inflate by more than 150% if a second-order dynamical model with moderately large carryover effects is wrongly identified as that of a first-order model. This means that the effects of mis-identification of the process I-O model on the process total mean square error (TMSE) is not negligible for implementing a dynamic run-to-run (RTR) process control. Supplementary materials for this article are available online.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2016.1228547</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Computer simulation ; Control stability ; Control systems ; Controllers ; Dynamic model ; Dynamic models ; Error analysis ; Errors ; EWMA controller ; Input-output dynamical model ; Mathematical models ; Mean square errors ; Mean square values ; Process controls ; Quasi-MMSE controller ; Run-to-run control</subject><ispartof>Technometrics, 2017-07, Vol.59 (3), p.381-390</ispartof><rights>2017 American Statistical Association and the American Society for Quality 2017</rights><rights>2017 American Statistical Association and the American Society for Quality</rights><rights>Copyright American Society for Quality 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-81f9d4d89d98501340659eca90b71e0f51ffa8e96a0e0ce334b90d01adb3cf6e3</citedby><cites>FETCH-LOGICAL-c407t-81f9d4d89d98501340659eca90b71e0f51ffa8e96a0e0ce334b90d01adb3cf6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44869182$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44869182$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Tseng, Sheng-Tsaing</creatorcontrib><creatorcontrib>Chen, Pei-Yu</creatorcontrib><title>A Generalized Quasi-MMSE Controller for Run-to-Run Dynamic Models</title><title>Technometrics</title><description>This study proposes a generalized quasi-minimum mean square error (qMMSE) controller for implementing a run-to-run process control where the process input-output relationship follows a general-order dynamical model with added noise. The expression of the process output, the long-term stability conditions and the optimal discount factor of this controller are derived analytically. Furthermore, we use the proposed second-order dynamical model to illustrate the effects of mis-identification of the process I-O model on the process total mean square error (TMSE). Via a comprehensive simulation study, the model demonstrates that the TMSE may inflate by more than 150% if a second-order dynamical model with moderately large carryover effects is wrongly identified as that of a first-order model. This means that the effects of mis-identification of the process I-O model on the process total mean square error (TMSE) is not negligible for implementing a dynamic run-to-run (RTR) process control. Supplementary materials for this article are available online.</description><subject>Computer simulation</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Dynamic model</subject><subject>Dynamic models</subject><subject>Error analysis</subject><subject>Errors</subject><subject>EWMA controller</subject><subject>Input-output dynamical model</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>Process controls</subject><subject>Quasi-MMSE controller</subject><subject>Run-to-run control</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_oTDgeurNY_LYWWqtgkV8rUM6SWDKdFKTGaT-eqdMdenqLs537oEPoQmGKQYJNwAMsAA-JYD5FBMiCyZO0AgXVOREEHqKRgcmP0Dn6CKlDQCmRIoRms2ypWtcNHX17Wz20plU5avV2yKbh6aNoa5dzHyI2WvX5G3I-5Pd7RuzrcpsFayr0yU686ZO7up4x-jjfvE-f8ifnpeP89lTXjIQbS6xV5ZZqaySRb_OgBfKlUbBWmAHvsDeG-kUN-CgdJSytQIL2Ng1LT13dIyuh7-7GD47l1q9CV1s-klNsOCkIJyInioGqowhpei83sVqa-JeY9AHW_rXlj7Y0kdbfW8y9DapDfGvxJjkCkvS57dDXjW9ja35CrG2ujX7OkQfTVNWSdP_J34AzDp4ng</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Tseng, Sheng-Tsaing</creator><creator>Chen, Pei-Yu</creator><general>Taylor &amp; Francis</general><general>American Society for Quality and the American Statistical Association</general><general>American Society for Quality</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170703</creationdate><title>A Generalized Quasi-MMSE Controller for Run-to-Run Dynamic Models</title><author>Tseng, Sheng-Tsaing ; Chen, Pei-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-81f9d4d89d98501340659eca90b71e0f51ffa8e96a0e0ce334b90d01adb3cf6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Dynamic model</topic><topic>Dynamic models</topic><topic>Error analysis</topic><topic>Errors</topic><topic>EWMA controller</topic><topic>Input-output dynamical model</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>Process controls</topic><topic>Quasi-MMSE controller</topic><topic>Run-to-run control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Sheng-Tsaing</creatorcontrib><creatorcontrib>Chen, Pei-Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Sheng-Tsaing</au><au>Chen, Pei-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalized Quasi-MMSE Controller for Run-to-Run Dynamic Models</atitle><jtitle>Technometrics</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>59</volume><issue>3</issue><spage>381</spage><epage>390</epage><pages>381-390</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><abstract>This study proposes a generalized quasi-minimum mean square error (qMMSE) controller for implementing a run-to-run process control where the process input-output relationship follows a general-order dynamical model with added noise. The expression of the process output, the long-term stability conditions and the optimal discount factor of this controller are derived analytically. Furthermore, we use the proposed second-order dynamical model to illustrate the effects of mis-identification of the process I-O model on the process total mean square error (TMSE). Via a comprehensive simulation study, the model demonstrates that the TMSE may inflate by more than 150% if a second-order dynamical model with moderately large carryover effects is wrongly identified as that of a first-order model. This means that the effects of mis-identification of the process I-O model on the process total mean square error (TMSE) is not negligible for implementing a dynamic run-to-run (RTR) process control. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00401706.2016.1228547</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2017-07, Vol.59 (3), p.381-390
issn 0040-1706
1537-2723
language eng
recordid cdi_proquest_journals_2176252627
source JSTOR Mathematics and Statistics; Jstor Complete Legacy
subjects Computer simulation
Control stability
Control systems
Controllers
Dynamic model
Dynamic models
Error analysis
Errors
EWMA controller
Input-output dynamical model
Mathematical models
Mean square errors
Mean square values
Process controls
Quasi-MMSE controller
Run-to-run control
title A Generalized Quasi-MMSE Controller for Run-to-Run Dynamic Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalized%20Quasi-MMSE%20Controller%20for%20Run-to-Run%20Dynamic%20Models&rft.jtitle=Technometrics&rft.au=Tseng,%20Sheng-Tsaing&rft.date=2017-07-03&rft.volume=59&rft.issue=3&rft.spage=381&rft.epage=390&rft.pages=381-390&rft.issn=0040-1706&rft.eissn=1537-2723&rft_id=info:doi/10.1080/00401706.2016.1228547&rft_dat=%3Cjstor_proqu%3E44869182%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176252627&rft_id=info:pmid/&rft_jstor_id=44869182&rfr_iscdi=true