Factor models for matrix-valued high-dimensional time series
In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a m...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2019-01, Vol.208 (1), p.231-248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 1 |
container_start_page | 231 |
container_title | Journal of econometrics |
container_volume | 208 |
creator | Wang, Dong Liu, Xialu Chen, Rong |
description | In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples. |
doi_str_mv | 10.1016/j.jeconom.2018.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176251119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407618301787</els_id><sourcerecordid>2176251119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</originalsourceid><addsrcrecordid>eNqFkEFLw0AUhBdRsFZ_ghDwnPheks1mQRApVoWCFz0vye5buyHN1t206L83pb17mjnMDMPH2C1ChoDVfZd1pP3gN1kOWGcgM8DijM2wFnla1ZKfsxkUUKYliOqSXcXYAQAv62LGHpaNHn1INt5QHxN7sM0Y3E-6b_odmWTtvtapcRsaovND0yfj5JNIwVG8Zhe26SPdnHTOPpfPH4vXdPX-8rZ4WqW6LOWYcguahMWqxYpjg1xgVRuoqBaFtLqF3FiJrZRtya1BJILGQF2TKFAA2WLO7o672-C_dxRH1fldmM5ElaOoco6IckrxY0oHH2Mgq7bBbZrwqxDUAZTq1AmUOoBSINUEauo9HnsTANo7CipqR4Mm4wLpURnv_ln4AyOrc7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176251119</pqid></control><display><type>article</type><title>Factor models for matrix-valued high-dimensional time series</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Dong ; Liu, Xialu ; Chen, Rong</creator><creatorcontrib>Wang, Dong ; Liu, Xialu ; Chen, Rong</creatorcontrib><description>In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2018.09.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Discriminant analysis ; Economic indicators ; Economic models ; Estimating techniques ; Factor analysis ; Factor structures ; Finance ; Matrix ; Simulation ; Time series</subject><ispartof>Journal of econometrics, 2019-01, Vol.208 (1), p.231-248</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</citedby><cites>FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407618301787$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Liu, Xialu</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><title>Factor models for matrix-valued high-dimensional time series</title><title>Journal of econometrics</title><description>In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.</description><subject>Discriminant analysis</subject><subject>Economic indicators</subject><subject>Economic models</subject><subject>Estimating techniques</subject><subject>Factor analysis</subject><subject>Factor structures</subject><subject>Finance</subject><subject>Matrix</subject><subject>Simulation</subject><subject>Time series</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AUhBdRsFZ_ghDwnPheks1mQRApVoWCFz0vye5buyHN1t206L83pb17mjnMDMPH2C1ChoDVfZd1pP3gN1kOWGcgM8DijM2wFnla1ZKfsxkUUKYliOqSXcXYAQAv62LGHpaNHn1INt5QHxN7sM0Y3E-6b_odmWTtvtapcRsaovND0yfj5JNIwVG8Zhe26SPdnHTOPpfPH4vXdPX-8rZ4WqW6LOWYcguahMWqxYpjg1xgVRuoqBaFtLqF3FiJrZRtya1BJILGQF2TKFAA2WLO7o672-C_dxRH1fldmM5ElaOoco6IckrxY0oHH2Mgq7bBbZrwqxDUAZTq1AmUOoBSINUEauo9HnsTANo7CipqR4Mm4wLpURnv_ln4AyOrc7s</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, Dong</creator><creator>Liu, Xialu</creator><creator>Chen, Rong</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201901</creationdate><title>Factor models for matrix-valued high-dimensional time series</title><author>Wang, Dong ; Liu, Xialu ; Chen, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Discriminant analysis</topic><topic>Economic indicators</topic><topic>Economic models</topic><topic>Estimating techniques</topic><topic>Factor analysis</topic><topic>Factor structures</topic><topic>Finance</topic><topic>Matrix</topic><topic>Simulation</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Liu, Xialu</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong</au><au>Liu, Xialu</au><au>Chen, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factor models for matrix-valued high-dimensional time series</atitle><jtitle>Journal of econometrics</jtitle><date>2019-01</date><risdate>2019</risdate><volume>208</volume><issue>1</issue><spage>231</spage><epage>248</epage><pages>231-248</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2018.09.013</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2019-01, Vol.208 (1), p.231-248 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2176251119 |
source | Elsevier ScienceDirect Journals |
subjects | Discriminant analysis Economic indicators Economic models Estimating techniques Factor analysis Factor structures Finance Matrix Simulation Time series |
title | Factor models for matrix-valued high-dimensional time series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factor%20models%20for%20matrix-valued%20high-dimensional%20time%20series&rft.jtitle=Journal%20of%20econometrics&rft.au=Wang,%20Dong&rft.date=2019-01&rft.volume=208&rft.issue=1&rft.spage=231&rft.epage=248&rft.pages=231-248&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2018.09.013&rft_dat=%3Cproquest_cross%3E2176251119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176251119&rft_id=info:pmid/&rft_els_id=S0304407618301787&rfr_iscdi=true |