Factor models for matrix-valued high-dimensional time series

In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2019-01, Vol.208 (1), p.231-248
Hauptverfasser: Wang, Dong, Liu, Xialu, Chen, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 1
container_start_page 231
container_title Journal of econometrics
container_volume 208
creator Wang, Dong
Liu, Xialu
Chen, Rong
description In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.
doi_str_mv 10.1016/j.jeconom.2018.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176251119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407618301787</els_id><sourcerecordid>2176251119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</originalsourceid><addsrcrecordid>eNqFkEFLw0AUhBdRsFZ_ghDwnPheks1mQRApVoWCFz0vye5buyHN1t206L83pb17mjnMDMPH2C1ChoDVfZd1pP3gN1kOWGcgM8DijM2wFnla1ZKfsxkUUKYliOqSXcXYAQAv62LGHpaNHn1INt5QHxN7sM0Y3E-6b_odmWTtvtapcRsaovND0yfj5JNIwVG8Zhe26SPdnHTOPpfPH4vXdPX-8rZ4WqW6LOWYcguahMWqxYpjg1xgVRuoqBaFtLqF3FiJrZRtya1BJILGQF2TKFAA2WLO7o672-C_dxRH1fldmM5ElaOoco6IckrxY0oHH2Mgq7bBbZrwqxDUAZTq1AmUOoBSINUEauo9HnsTANo7CipqR4Mm4wLpURnv_ln4AyOrc7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176251119</pqid></control><display><type>article</type><title>Factor models for matrix-valued high-dimensional time series</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Dong ; Liu, Xialu ; Chen, Rong</creator><creatorcontrib>Wang, Dong ; Liu, Xialu ; Chen, Rong</creatorcontrib><description>In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2018.09.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Discriminant analysis ; Economic indicators ; Economic models ; Estimating techniques ; Factor analysis ; Factor structures ; Finance ; Matrix ; Simulation ; Time series</subject><ispartof>Journal of econometrics, 2019-01, Vol.208 (1), p.231-248</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</citedby><cites>FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407618301787$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Liu, Xialu</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><title>Factor models for matrix-valued high-dimensional time series</title><title>Journal of econometrics</title><description>In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.</description><subject>Discriminant analysis</subject><subject>Economic indicators</subject><subject>Economic models</subject><subject>Estimating techniques</subject><subject>Factor analysis</subject><subject>Factor structures</subject><subject>Finance</subject><subject>Matrix</subject><subject>Simulation</subject><subject>Time series</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AUhBdRsFZ_ghDwnPheks1mQRApVoWCFz0vye5buyHN1t206L83pb17mjnMDMPH2C1ChoDVfZd1pP3gN1kOWGcgM8DijM2wFnla1ZKfsxkUUKYliOqSXcXYAQAv62LGHpaNHn1INt5QHxN7sM0Y3E-6b_odmWTtvtapcRsaovND0yfj5JNIwVG8Zhe26SPdnHTOPpfPH4vXdPX-8rZ4WqW6LOWYcguahMWqxYpjg1xgVRuoqBaFtLqF3FiJrZRtya1BJILGQF2TKFAA2WLO7o672-C_dxRH1fldmM5ElaOoco6IckrxY0oHH2Mgq7bBbZrwqxDUAZTq1AmUOoBSINUEauo9HnsTANo7CipqR4Mm4wLpURnv_ln4AyOrc7s</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, Dong</creator><creator>Liu, Xialu</creator><creator>Chen, Rong</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201901</creationdate><title>Factor models for matrix-valued high-dimensional time series</title><author>Wang, Dong ; Liu, Xialu ; Chen, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-5f0ce7f16b1651a157168d06e8739fcb02df91b99b45fd11ee0ad088e73170ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Discriminant analysis</topic><topic>Economic indicators</topic><topic>Economic models</topic><topic>Estimating techniques</topic><topic>Factor analysis</topic><topic>Factor structures</topic><topic>Finance</topic><topic>Matrix</topic><topic>Simulation</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Liu, Xialu</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong</au><au>Liu, Xialu</au><au>Chen, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factor models for matrix-valued high-dimensional time series</atitle><jtitle>Journal of econometrics</jtitle><date>2019-01</date><risdate>2019</risdate><volume>208</volume><issue>1</issue><spage>231</spage><epage>248</epage><pages>231-248</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>In finance, economics and many other fields, observations in a matrix form are often observed over time. For example, many economic indicators are obtained in different countries over time. Various financial characteristics of many companies are reported over time. Although it is natural to turn a matrix observation into a long vector then use standard vector time series models or factor analysis, it is often the case that the columns and rows of a matrix represent different sets of information that are closely interrelated in a very structural way. We propose a novel factor model that maintains and utilizes the matrix structure to achieve greater dimensional reduction as well as finding clearer and more interpretable factor structures. Estimation procedure and its theoretical properties are investigated and demonstrated with simulated and real examples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2018.09.013</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2019-01, Vol.208 (1), p.231-248
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2176251119
source Elsevier ScienceDirect Journals
subjects Discriminant analysis
Economic indicators
Economic models
Estimating techniques
Factor analysis
Factor structures
Finance
Matrix
Simulation
Time series
title Factor models for matrix-valued high-dimensional time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factor%20models%20for%20matrix-valued%20high-dimensional%20time%20series&rft.jtitle=Journal%20of%20econometrics&rft.au=Wang,%20Dong&rft.date=2019-01&rft.volume=208&rft.issue=1&rft.spage=231&rft.epage=248&rft.pages=231-248&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2018.09.013&rft_dat=%3Cproquest_cross%3E2176251119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176251119&rft_id=info:pmid/&rft_els_id=S0304407618301787&rfr_iscdi=true