Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C

The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin defor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2017-08, Vol.32 (16), p.3146-3155
Hauptverfasser: Ji, Shengya, Liang, Shuhua, Song, Kexing, Li, Hongxia, Li, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3155
container_issue 16
container_start_page 3146
container_title Journal of materials research
container_volume 32
creator Ji, Shengya
Liang, Shuhua
Song, Kexing
Li, Hongxia
Li, Zhou
description The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.
doi_str_mv 10.1557/jmr.2017.275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176179510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2017_275</cupid><sourcerecordid>2176179510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</originalsourceid><addsrcrecordid>eNqFkM9KxDAQxoMouK7efICAV1snadO0RynrH1jwohcvJU3T3SxtU5N2YW--gy_iM_goPokpu-BJvMzA8Jtv5vsQuiQQEsb4zaa1IQXCQ8rZEZpRiOOARTQ5RjNI0zigGYlP0ZlzGwDCgMcz1C-2phkHbTpsatxqaY0b7CiH0Sosugq3Sq5Fp6VocG9Nr-yglcO6w6_d9_tHPvryrLFoGrPD1Wh1t8JObZXfXpsBW9M000gMOALAX5_5OTqpRePUxaHP0cvd4jl_CJZP94_57TKQlDEWSMEgS5ighESSUy6hrrnMKsZSWQtRAufeDQgOUsgIyrQq0yjzgJCQMZFEc3S11_Vfv43KDcXGjLbzJwtKeEJ4xgh46npPTb6dVXXRW90KuysIFFOmhc-0mDItfKYeD_a46yenyv6K_sGHB3nRllZXK_XPwg9rK4tY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176179510</pqid></control><display><type>article</type><title>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Ji, Shengya ; Liang, Shuhua ; Song, Kexing ; Li, Hongxia ; Li, Zhou</creator><creatorcontrib>Ji, Shengya ; Liang, Shuhua ; Song, Kexing ; Li, Hongxia ; Li, Zhou</creatorcontrib><description>The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2017.275</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Biomaterials ; Chemical precipitation ; Computer simulation ; Copper ; Crack initiation ; Crack propagation ; Cracks ; Deformation ; Deformation effects ; Deformation mechanisms ; Ductility ; Dynamic recrystallization ; Elongation ; Evolution ; Grain boundaries ; Grain refinement ; Grain size ; Hot rolling ; Inorganic Chemistry ; Internal energy ; Light ; Magnesium alloys ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Metals ; Microstructure ; Nanotechnology ; Phase transitions ; Solid solutions ; Solution strengthening ; Test methods ; Titanium base alloys ; Twins</subject><ispartof>Journal of materials research, 2017-08, Vol.32 (16), p.3146-3155</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</citedby><cites>FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2017.275$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291417002758/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Ji, Shengya</creatorcontrib><creatorcontrib>Liang, Shuhua</creatorcontrib><creatorcontrib>Song, Kexing</creatorcontrib><creatorcontrib>Li, Hongxia</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><title>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical precipitation</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Dynamic recrystallization</subject><subject>Elongation</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Hot rolling</subject><subject>Inorganic Chemistry</subject><subject>Internal energy</subject><subject>Light</subject><subject>Magnesium alloys</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Test methods</subject><subject>Titanium base alloys</subject><subject>Twins</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM9KxDAQxoMouK7efICAV1snadO0RynrH1jwohcvJU3T3SxtU5N2YW--gy_iM_goPokpu-BJvMzA8Jtv5vsQuiQQEsb4zaa1IQXCQ8rZEZpRiOOARTQ5RjNI0zigGYlP0ZlzGwDCgMcz1C-2phkHbTpsatxqaY0b7CiH0Sosugq3Sq5Fp6VocG9Nr-yglcO6w6_d9_tHPvryrLFoGrPD1Wh1t8JObZXfXpsBW9M000gMOALAX5_5OTqpRePUxaHP0cvd4jl_CJZP94_57TKQlDEWSMEgS5ighESSUy6hrrnMKsZSWQtRAufeDQgOUsgIyrQq0yjzgJCQMZFEc3S11_Vfv43KDcXGjLbzJwtKeEJ4xgh46npPTb6dVXXRW90KuysIFFOmhc-0mDItfKYeD_a46yenyv6K_sGHB3nRllZXK_XPwg9rK4tY</recordid><startdate>20170828</startdate><enddate>20170828</enddate><creator>Ji, Shengya</creator><creator>Liang, Shuhua</creator><creator>Song, Kexing</creator><creator>Li, Hongxia</creator><creator>Li, Zhou</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170828</creationdate><title>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</title><author>Ji, Shengya ; Liang, Shuhua ; Song, Kexing ; Li, Hongxia ; Li, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical precipitation</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Dynamic recrystallization</topic><topic>Elongation</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Hot rolling</topic><topic>Inorganic Chemistry</topic><topic>Internal energy</topic><topic>Light</topic><topic>Magnesium alloys</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Test methods</topic><topic>Titanium base alloys</topic><topic>Twins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shengya</creatorcontrib><creatorcontrib>Liang, Shuhua</creatorcontrib><creatorcontrib>Song, Kexing</creatorcontrib><creatorcontrib>Li, Hongxia</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shengya</au><au>Liang, Shuhua</au><au>Song, Kexing</au><au>Li, Hongxia</au><au>Li, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-08-28</date><risdate>2017</risdate><volume>32</volume><issue>16</issue><spage>3146</spage><epage>3155</epage><pages>3146-3155</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2017.275</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2017-08, Vol.32 (16), p.3146-3155
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2176179510
source SpringerNature Journals; Cambridge University Press Journals Complete
subjects Alloys
Applied and Technical Physics
Biomaterials
Chemical precipitation
Computer simulation
Copper
Crack initiation
Crack propagation
Cracks
Deformation
Deformation effects
Deformation mechanisms
Ductility
Dynamic recrystallization
Elongation
Evolution
Grain boundaries
Grain refinement
Grain size
Hot rolling
Inorganic Chemistry
Internal energy
Light
Magnesium alloys
Materials Engineering
Materials research
Materials Science
Mechanical properties
Metals
Microstructure
Nanotechnology
Phase transitions
Solid solutions
Solution strengthening
Test methods
Titanium base alloys
Twins
title Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20microstructure%20and%20mechanical%20properties%20in%20Zn%E2%80%93Cu%E2%80%93Ti%20alloy%20during%20severe%20hot%20rolling%20at%20300%20%C2%B0C&rft.jtitle=Journal%20of%20materials%20research&rft.au=Ji,%20Shengya&rft.date=2017-08-28&rft.volume=32&rft.issue=16&rft.spage=3146&rft.epage=3155&rft.pages=3146-3155&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2017.275&rft_dat=%3Cproquest_cross%3E2176179510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176179510&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2017_275&rfr_iscdi=true