Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C
The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin defor...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2017-08, Vol.32 (16), p.3146-3155 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3155 |
---|---|
container_issue | 16 |
container_start_page | 3146 |
container_title | Journal of materials research |
container_volume | 32 |
creator | Ji, Shengya Liang, Shuhua Song, Kexing Li, Hongxia Li, Zhou |
description | The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys. |
doi_str_mv | 10.1557/jmr.2017.275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176179510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2017_275</cupid><sourcerecordid>2176179510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</originalsourceid><addsrcrecordid>eNqFkM9KxDAQxoMouK7efICAV1snadO0RynrH1jwohcvJU3T3SxtU5N2YW--gy_iM_goPokpu-BJvMzA8Jtv5vsQuiQQEsb4zaa1IQXCQ8rZEZpRiOOARTQ5RjNI0zigGYlP0ZlzGwDCgMcz1C-2phkHbTpsatxqaY0b7CiH0Sosugq3Sq5Fp6VocG9Nr-yglcO6w6_d9_tHPvryrLFoGrPD1Wh1t8JObZXfXpsBW9M000gMOALAX5_5OTqpRePUxaHP0cvd4jl_CJZP94_57TKQlDEWSMEgS5ighESSUy6hrrnMKsZSWQtRAufeDQgOUsgIyrQq0yjzgJCQMZFEc3S11_Vfv43KDcXGjLbzJwtKeEJ4xgh46npPTb6dVXXRW90KuysIFFOmhc-0mDItfKYeD_a46yenyv6K_sGHB3nRllZXK_XPwg9rK4tY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176179510</pqid></control><display><type>article</type><title>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Ji, Shengya ; Liang, Shuhua ; Song, Kexing ; Li, Hongxia ; Li, Zhou</creator><creatorcontrib>Ji, Shengya ; Liang, Shuhua ; Song, Kexing ; Li, Hongxia ; Li, Zhou</creatorcontrib><description>The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2017.275</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Biomaterials ; Chemical precipitation ; Computer simulation ; Copper ; Crack initiation ; Crack propagation ; Cracks ; Deformation ; Deformation effects ; Deformation mechanisms ; Ductility ; Dynamic recrystallization ; Elongation ; Evolution ; Grain boundaries ; Grain refinement ; Grain size ; Hot rolling ; Inorganic Chemistry ; Internal energy ; Light ; Magnesium alloys ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Metals ; Microstructure ; Nanotechnology ; Phase transitions ; Solid solutions ; Solution strengthening ; Test methods ; Titanium base alloys ; Twins</subject><ispartof>Journal of materials research, 2017-08, Vol.32 (16), p.3146-3155</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</citedby><cites>FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2017.275$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291417002758/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Ji, Shengya</creatorcontrib><creatorcontrib>Liang, Shuhua</creatorcontrib><creatorcontrib>Song, Kexing</creatorcontrib><creatorcontrib>Li, Hongxia</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><title>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemical precipitation</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Dynamic recrystallization</subject><subject>Elongation</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Hot rolling</subject><subject>Inorganic Chemistry</subject><subject>Internal energy</subject><subject>Light</subject><subject>Magnesium alloys</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Test methods</subject><subject>Titanium base alloys</subject><subject>Twins</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM9KxDAQxoMouK7efICAV1snadO0RynrH1jwohcvJU3T3SxtU5N2YW--gy_iM_goPokpu-BJvMzA8Jtv5vsQuiQQEsb4zaa1IQXCQ8rZEZpRiOOARTQ5RjNI0zigGYlP0ZlzGwDCgMcz1C-2phkHbTpsatxqaY0b7CiH0Sosugq3Sq5Fp6VocG9Nr-yglcO6w6_d9_tHPvryrLFoGrPD1Wh1t8JObZXfXpsBW9M000gMOALAX5_5OTqpRePUxaHP0cvd4jl_CJZP94_57TKQlDEWSMEgS5ighESSUy6hrrnMKsZSWQtRAufeDQgOUsgIyrQq0yjzgJCQMZFEc3S11_Vfv43KDcXGjLbzJwtKeEJ4xgh46npPTb6dVXXRW90KuysIFFOmhc-0mDItfKYeD_a46yenyv6K_sGHB3nRllZXK_XPwg9rK4tY</recordid><startdate>20170828</startdate><enddate>20170828</enddate><creator>Ji, Shengya</creator><creator>Liang, Shuhua</creator><creator>Song, Kexing</creator><creator>Li, Hongxia</creator><creator>Li, Zhou</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170828</creationdate><title>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</title><author>Ji, Shengya ; Liang, Shuhua ; Song, Kexing ; Li, Hongxia ; Li, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2555-ca50965a2113c727c0ff7c9d558cfaab0772910a70cac30b8db839c9dac095a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemical precipitation</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Dynamic recrystallization</topic><topic>Elongation</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Hot rolling</topic><topic>Inorganic Chemistry</topic><topic>Internal energy</topic><topic>Light</topic><topic>Magnesium alloys</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Test methods</topic><topic>Titanium base alloys</topic><topic>Twins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Shengya</creatorcontrib><creatorcontrib>Liang, Shuhua</creatorcontrib><creatorcontrib>Song, Kexing</creatorcontrib><creatorcontrib>Li, Hongxia</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Shengya</au><au>Liang, Shuhua</au><au>Song, Kexing</au><au>Li, Hongxia</au><au>Li, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-08-28</date><risdate>2017</risdate><volume>32</volume><issue>16</issue><spage>3146</spage><epage>3155</epage><pages>3146-3155</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2017.275</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2017-08, Vol.32 (16), p.3146-3155 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2176179510 |
source | SpringerNature Journals; Cambridge University Press Journals Complete |
subjects | Alloys Applied and Technical Physics Biomaterials Chemical precipitation Computer simulation Copper Crack initiation Crack propagation Cracks Deformation Deformation effects Deformation mechanisms Ductility Dynamic recrystallization Elongation Evolution Grain boundaries Grain refinement Grain size Hot rolling Inorganic Chemistry Internal energy Light Magnesium alloys Materials Engineering Materials research Materials Science Mechanical properties Metals Microstructure Nanotechnology Phase transitions Solid solutions Solution strengthening Test methods Titanium base alloys Twins |
title | Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20microstructure%20and%20mechanical%20properties%20in%20Zn%E2%80%93Cu%E2%80%93Ti%20alloy%20during%20severe%20hot%20rolling%20at%20300%20%C2%B0C&rft.jtitle=Journal%20of%20materials%20research&rft.au=Ji,%20Shengya&rft.date=2017-08-28&rft.volume=32&rft.issue=16&rft.spage=3146&rft.epage=3155&rft.pages=3146-3155&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2017.275&rft_dat=%3Cproquest_cross%3E2176179510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176179510&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2017_275&rfr_iscdi=true |