Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction
An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Th...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-03, Vol.42 (4), p.1099-1113 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 4 |
container_start_page | 1099 |
container_title | Mathematical methods in the applied sciences |
container_volume | 42 |
creator | Ma, Wen‐Xiu |
description | An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions. |
doi_str_mv | 10.1002/mma.5416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176044263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176044263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKfgIwS88aYzSdO0vRxDN3FDEPU2pGkCGU0ykxTZnY_gM_oktpu3Xv1w-P5zOB8A1xjNMELkzloxKyhmJ2CCUV1nmJbsFEwQLlFGCabn4CLGLUKowphMQPNilBXO_Xx9r0zXqJDgLvimUzZC4VoYfWeSd2P2yXgXoddQQNt3yUhvd94pl6B9at9h3Mek7KFlUoRBtb0cK5fgTIsuqqu_nIK3h_vXxSpbPy8fF_N1Jkmds0y1WEld61zpuhKyaJjApFRSVsNAiJogpZu8qpFkom0Zo02hEZaIFLQloqryKbg57h0e-OhVTHzr--CGk5zgkiFKCcsH6vZIyeBjDErzXTBWhD3HiI8G-WCQjwYHNDuin6ZT-385vtnMD_wvrAR0-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176044263</pqid></control><display><type>article</type><title>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Wen‐Xiu</creator><creatorcontrib>Ma, Wen‐Xiu</creatorcontrib><description>An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5416</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>matrix spectral problem ; Reduction ; Riemann‐Hilbert problem ; soliton solution</subject><ispartof>Mathematical methods in the applied sciences, 2019-03, Vol.42 (4), p.1099-1113</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</citedby><cites>FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</cites><orcidid>0000-0001-5309-1493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5416$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5416$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ma, Wen‐Xiu</creatorcontrib><title>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</title><title>Mathematical methods in the applied sciences</title><description>An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.</description><subject>matrix spectral problem</subject><subject>Reduction</subject><subject>Riemann‐Hilbert problem</subject><subject>soliton solution</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUhoMoOKfgIwS88aYzSdO0vRxDN3FDEPU2pGkCGU0ykxTZnY_gM_oktpu3Xv1w-P5zOB8A1xjNMELkzloxKyhmJ2CCUV1nmJbsFEwQLlFGCabn4CLGLUKowphMQPNilBXO_Xx9r0zXqJDgLvimUzZC4VoYfWeSd2P2yXgXoddQQNt3yUhvd94pl6B9at9h3Mek7KFlUoRBtb0cK5fgTIsuqqu_nIK3h_vXxSpbPy8fF_N1Jkmds0y1WEld61zpuhKyaJjApFRSVsNAiJogpZu8qpFkom0Zo02hEZaIFLQloqryKbg57h0e-OhVTHzr--CGk5zgkiFKCcsH6vZIyeBjDErzXTBWhD3HiI8G-WCQjwYHNDuin6ZT-385vtnMD_wvrAR0-Q</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Ma, Wen‐Xiu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid></search><sort><creationdate>20190315</creationdate><title>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</title><author>Ma, Wen‐Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>matrix spectral problem</topic><topic>Reduction</topic><topic>Riemann‐Hilbert problem</topic><topic>soliton solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wen‐Xiu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wen‐Xiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>42</volume><issue>4</issue><spage>1099</spage><epage>1113</epage><pages>1099-1113</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5416</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2019-03, Vol.42 (4), p.1099-1113 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2176044263 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | matrix spectral problem Reduction Riemann‐Hilbert problem soliton solution |
title | Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%90Hilbert%20problems%20and%20soliton%20solutions%20of%20a%20multicomponent%20mKdV%20system%20and%20its%20reduction&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ma,%20Wen%E2%80%90Xiu&rft.date=2019-03-15&rft.volume=42&rft.issue=4&rft.spage=1099&rft.epage=1113&rft.pages=1099-1113&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5416&rft_dat=%3Cproquest_cross%3E2176044263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176044263&rft_id=info:pmid/&rfr_iscdi=true |