Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction

An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-03, Vol.42 (4), p.1099-1113
1. Verfasser: Ma, Wen‐Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1113
container_issue 4
container_start_page 1099
container_title Mathematical methods in the applied sciences
container_volume 42
creator Ma, Wen‐Xiu
description An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.
doi_str_mv 10.1002/mma.5416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176044263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176044263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKfgIwS88aYzSdO0vRxDN3FDEPU2pGkCGU0ykxTZnY_gM_oktpu3Xv1w-P5zOB8A1xjNMELkzloxKyhmJ2CCUV1nmJbsFEwQLlFGCabn4CLGLUKowphMQPNilBXO_Xx9r0zXqJDgLvimUzZC4VoYfWeSd2P2yXgXoddQQNt3yUhvd94pl6B9at9h3Mek7KFlUoRBtb0cK5fgTIsuqqu_nIK3h_vXxSpbPy8fF_N1Jkmds0y1WEld61zpuhKyaJjApFRSVsNAiJogpZu8qpFkom0Zo02hEZaIFLQloqryKbg57h0e-OhVTHzr--CGk5zgkiFKCcsH6vZIyeBjDErzXTBWhD3HiI8G-WCQjwYHNDuin6ZT-385vtnMD_wvrAR0-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176044263</pqid></control><display><type>article</type><title>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Wen‐Xiu</creator><creatorcontrib>Ma, Wen‐Xiu</creatorcontrib><description>An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5416</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>matrix spectral problem ; Reduction ; Riemann‐Hilbert problem ; soliton solution</subject><ispartof>Mathematical methods in the applied sciences, 2019-03, Vol.42 (4), p.1099-1113</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</citedby><cites>FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</cites><orcidid>0000-0001-5309-1493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5416$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5416$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ma, Wen‐Xiu</creatorcontrib><title>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</title><title>Mathematical methods in the applied sciences</title><description>An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.</description><subject>matrix spectral problem</subject><subject>Reduction</subject><subject>Riemann‐Hilbert problem</subject><subject>soliton solution</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUhoMoOKfgIwS88aYzSdO0vRxDN3FDEPU2pGkCGU0ykxTZnY_gM_oktpu3Xv1w-P5zOB8A1xjNMELkzloxKyhmJ2CCUV1nmJbsFEwQLlFGCabn4CLGLUKowphMQPNilBXO_Xx9r0zXqJDgLvimUzZC4VoYfWeSd2P2yXgXoddQQNt3yUhvd94pl6B9at9h3Mek7KFlUoRBtb0cK5fgTIsuqqu_nIK3h_vXxSpbPy8fF_N1Jkmds0y1WEld61zpuhKyaJjApFRSVsNAiJogpZu8qpFkom0Zo02hEZaIFLQloqryKbg57h0e-OhVTHzr--CGk5zgkiFKCcsH6vZIyeBjDErzXTBWhD3HiI8G-WCQjwYHNDuin6ZT-385vtnMD_wvrAR0-Q</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Ma, Wen‐Xiu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid></search><sort><creationdate>20190315</creationdate><title>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</title><author>Ma, Wen‐Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-ed1ecf9f3ef98ac5b6a127ecc8ef9aa920efb3890c6add664b5f01c0254d2a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>matrix spectral problem</topic><topic>Reduction</topic><topic>Riemann‐Hilbert problem</topic><topic>soliton solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wen‐Xiu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wen‐Xiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>42</volume><issue>4</issue><spage>1099</spage><epage>1113</epage><pages>1099-1113</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>An arbitrary order matrix spectral problem is introduced and its associated multicomponent AKNS integrable hierarchy is constructed. Based on this matrix spectral problem, a kind of Riemann‐Hilbert problems is formulated for a multicomponent mKdV system in the resulting AKNS integrable hierarchy. Through special corresponding Riemann‐Hilbert problems with an identity jump matrix, soliton solutions to the presented multicomponent mKdV system are explicitly worked out. A specific reduction of the multicomponent mKdV system is made, together with its reduced Lax pair and soliton solutions.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5416</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5309-1493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2019-03, Vol.42 (4), p.1099-1113
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2176044263
source Wiley Online Library Journals Frontfile Complete
subjects matrix spectral problem
Reduction
Riemann‐Hilbert problem
soliton solution
title Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%90Hilbert%20problems%20and%20soliton%20solutions%20of%20a%20multicomponent%20mKdV%20system%20and%20its%20reduction&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ma,%20Wen%E2%80%90Xiu&rft.date=2019-03-15&rft.volume=42&rft.issue=4&rft.spage=1099&rft.epage=1113&rft.pages=1099-1113&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5416&rft_dat=%3Cproquest_cross%3E2176044263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176044263&rft_id=info:pmid/&rfr_iscdi=true