Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation

In the present study, conjugate heat transfer of nanofluid in a wide microchannel with thick wall, by considering the velocity slip and temperature jump on the fluid–solid interface and also the effect of viscous dissipation is investigated. For numerical solution of velocity field, preconditioned l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meccanica (Milan) 2019-01, Vol.54 (1-2), p.135-153
Hauptverfasser: Alipour Lalami, Ali, Kalteh, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1-2
container_start_page 135
container_title Meccanica (Milan)
container_volume 54
creator Alipour Lalami, Ali
Kalteh, Mohammad
description In the present study, conjugate heat transfer of nanofluid in a wide microchannel with thick wall, by considering the velocity slip and temperature jump on the fluid–solid interface and also the effect of viscous dissipation is investigated. For numerical solution of velocity field, preconditioned lattice Boltzmann method (PLBM) based on standard LBM, and for temperature field, standard LBM are used. Upper wall of the microchannel is insulated and uniform heat flux is imposed on the lower wall of the solid region. For applying the temperature jump boundary condition on the fluid–solid interface, a new algorithm reported here, is used. The problem is solved for dimensionless slip coefficient 0–0.1, volume fraction 0, 0.02 and 0.04, nanoparticles diameters (10–50) nm, and also Reynolds numbers 10–150. The results of the presented algorithm for conjugate heat transfer with temperature jump at the fluid–solid interface, show good agreement with analytical and other numerical solutions. Also, it is shown that in conjugate heat transfer of nanofluid, using super hydrophobic surfaces not only has no considerable negative effect on the average Nusselt number, but also it can increase it, especially in higher Reynolds numbers. As well as, in conjugate heat transfer, unlike the conditions of ignoring the wall thickness (at constant heat flux boundary condition), temperature jump on the wall is not constant and depends on the Reynolds number. On the other hands, using super hydrophobic surfaces (considering velocity slip and temperature jump on the wall), decreases the effect of viscous dissipation, specially at higher volume fraction of nanoparticles.
doi_str_mv 10.1007/s11012-018-00937-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175942180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175942180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9012b11e7735f91073033aec107cad9397bc8b98c011703a578edba7e04835df3</originalsourceid><addsrcrecordid>eNp9kcuOEzEQRS0EEmHgB1hZYktDuR3HbXYw4jFSJDawtiru8oyjbnfjB6-P4VtxEqTZsapa3Huqri5jzwW8EgD6dRYCRN-BGDoAI3W3e8A2Qum-M7vt8JBtAHrV7bZKPWZPcj4CNBuoDfuzx1KCI_5umcrvGWPkOcx1whKWyBfPI8bFTzWM3C3xWG-xEL8jLLwkjNlT4iFy5D_CSHwOLi3urkFoesPJe3LlxCg0r5Sw1ET8WOf1JcefAacTcazufAnjyL-H7Jaa-RhyDuv5g6fskccp07N_84p9_fD-y_Wnbv_54831233npDClMy38QQjSWipvBGgJUiK5tjkcjTT64IaDGRwIoUGi0gONB9QE20Gq0csr9uLCXdPyrVIu9rjUFNtJ2wutzLYXAzRVf1G1mDkn8nZNYcb0ywqwpx7spQfberDnHuyumeTFlJs43lK6R__H9RdLDI4z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175942180</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alipour Lalami, Ali ; Kalteh, Mohammad</creator><creatorcontrib>Alipour Lalami, Ali ; Kalteh, Mohammad</creatorcontrib><description>In the present study, conjugate heat transfer of nanofluid in a wide microchannel with thick wall, by considering the velocity slip and temperature jump on the fluid–solid interface and also the effect of viscous dissipation is investigated. For numerical solution of velocity field, preconditioned lattice Boltzmann method (PLBM) based on standard LBM, and for temperature field, standard LBM are used. Upper wall of the microchannel is insulated and uniform heat flux is imposed on the lower wall of the solid region. For applying the temperature jump boundary condition on the fluid–solid interface, a new algorithm reported here, is used. The problem is solved for dimensionless slip coefficient 0–0.1, volume fraction 0, 0.02 and 0.04, nanoparticles diameters (10–50) nm, and also Reynolds numbers 10–150. The results of the presented algorithm for conjugate heat transfer with temperature jump at the fluid–solid interface, show good agreement with analytical and other numerical solutions. Also, it is shown that in conjugate heat transfer of nanofluid, using super hydrophobic surfaces not only has no considerable negative effect on the average Nusselt number, but also it can increase it, especially in higher Reynolds numbers. As well as, in conjugate heat transfer, unlike the conditions of ignoring the wall thickness (at constant heat flux boundary condition), temperature jump on the wall is not constant and depends on the Reynolds number. On the other hands, using super hydrophobic surfaces (considering velocity slip and temperature jump on the wall), decreases the effect of viscous dissipation, specially at higher volume fraction of nanoparticles.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-018-00937-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Boundary conditions ; Civil Engineering ; Classical Mechanics ; Computational fluid dynamics ; Computer simulation ; Conjugates ; Fluid flow ; Heat flux ; Heat transfer ; Hydrophobic surfaces ; Hydrophobicity ; Mechanical Engineering ; Microchannels ; Nanofluids ; Nanoparticles ; Physics ; Physics and Astronomy ; Reynolds number ; Slip ; Temperature distribution ; Temperature effects ; Thick walls ; Velocity distribution ; Wall thickness</subject><ispartof>Meccanica (Milan), 2019-01, Vol.54 (1-2), p.135-153</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9012b11e7735f91073033aec107cad9397bc8b98c011703a578edba7e04835df3</citedby><cites>FETCH-LOGICAL-c319t-9012b11e7735f91073033aec107cad9397bc8b98c011703a578edba7e04835df3</cites><orcidid>0000-0003-3965-3749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-018-00937-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-018-00937-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Alipour Lalami, Ali</creatorcontrib><creatorcontrib>Kalteh, Mohammad</creatorcontrib><title>Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>In the present study, conjugate heat transfer of nanofluid in a wide microchannel with thick wall, by considering the velocity slip and temperature jump on the fluid–solid interface and also the effect of viscous dissipation is investigated. For numerical solution of velocity field, preconditioned lattice Boltzmann method (PLBM) based on standard LBM, and for temperature field, standard LBM are used. Upper wall of the microchannel is insulated and uniform heat flux is imposed on the lower wall of the solid region. For applying the temperature jump boundary condition on the fluid–solid interface, a new algorithm reported here, is used. The problem is solved for dimensionless slip coefficient 0–0.1, volume fraction 0, 0.02 and 0.04, nanoparticles diameters (10–50) nm, and also Reynolds numbers 10–150. The results of the presented algorithm for conjugate heat transfer with temperature jump at the fluid–solid interface, show good agreement with analytical and other numerical solutions. Also, it is shown that in conjugate heat transfer of nanofluid, using super hydrophobic surfaces not only has no considerable negative effect on the average Nusselt number, but also it can increase it, especially in higher Reynolds numbers. As well as, in conjugate heat transfer, unlike the conditions of ignoring the wall thickness (at constant heat flux boundary condition), temperature jump on the wall is not constant and depends on the Reynolds number. On the other hands, using super hydrophobic surfaces (considering velocity slip and temperature jump on the wall), decreases the effect of viscous dissipation, specially at higher volume fraction of nanoparticles.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conjugates</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Mechanical Engineering</subject><subject>Microchannels</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reynolds number</subject><subject>Slip</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Thick walls</subject><subject>Velocity distribution</subject><subject>Wall thickness</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcuOEzEQRS0EEmHgB1hZYktDuR3HbXYw4jFSJDawtiru8oyjbnfjB6-P4VtxEqTZsapa3Huqri5jzwW8EgD6dRYCRN-BGDoAI3W3e8A2Qum-M7vt8JBtAHrV7bZKPWZPcj4CNBuoDfuzx1KCI_5umcrvGWPkOcx1whKWyBfPI8bFTzWM3C3xWG-xEL8jLLwkjNlT4iFy5D_CSHwOLi3urkFoesPJe3LlxCg0r5Sw1ET8WOf1JcefAacTcazufAnjyL-H7Jaa-RhyDuv5g6fskccp07N_84p9_fD-y_Wnbv_54831233npDClMy38QQjSWipvBGgJUiK5tjkcjTT64IaDGRwIoUGi0gONB9QE20Gq0csr9uLCXdPyrVIu9rjUFNtJ2wutzLYXAzRVf1G1mDkn8nZNYcb0ywqwpx7spQfberDnHuyumeTFlJs43lK6R__H9RdLDI4z</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Alipour Lalami, Ali</creator><creator>Kalteh, Mohammad</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3965-3749</orcidid></search><sort><creationdate>20190101</creationdate><title>Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation</title><author>Alipour Lalami, Ali ; Kalteh, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9012b11e7735f91073033aec107cad9397bc8b98c011703a578edba7e04835df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conjugates</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Mechanical Engineering</topic><topic>Microchannels</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reynolds number</topic><topic>Slip</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Thick walls</topic><topic>Velocity distribution</topic><topic>Wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alipour Lalami, Ali</creatorcontrib><creatorcontrib>Kalteh, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alipour Lalami, Ali</au><au>Kalteh, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>54</volume><issue>1-2</issue><spage>135</spage><epage>153</epage><pages>135-153</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>In the present study, conjugate heat transfer of nanofluid in a wide microchannel with thick wall, by considering the velocity slip and temperature jump on the fluid–solid interface and also the effect of viscous dissipation is investigated. For numerical solution of velocity field, preconditioned lattice Boltzmann method (PLBM) based on standard LBM, and for temperature field, standard LBM are used. Upper wall of the microchannel is insulated and uniform heat flux is imposed on the lower wall of the solid region. For applying the temperature jump boundary condition on the fluid–solid interface, a new algorithm reported here, is used. The problem is solved for dimensionless slip coefficient 0–0.1, volume fraction 0, 0.02 and 0.04, nanoparticles diameters (10–50) nm, and also Reynolds numbers 10–150. The results of the presented algorithm for conjugate heat transfer with temperature jump at the fluid–solid interface, show good agreement with analytical and other numerical solutions. Also, it is shown that in conjugate heat transfer of nanofluid, using super hydrophobic surfaces not only has no considerable negative effect on the average Nusselt number, but also it can increase it, especially in higher Reynolds numbers. As well as, in conjugate heat transfer, unlike the conditions of ignoring the wall thickness (at constant heat flux boundary condition), temperature jump on the wall is not constant and depends on the Reynolds number. On the other hands, using super hydrophobic surfaces (considering velocity slip and temperature jump on the wall), decreases the effect of viscous dissipation, specially at higher volume fraction of nanoparticles.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-018-00937-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3965-3749</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2019-01, Vol.54 (1-2), p.135-153
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_journals_2175942180
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Automotive Engineering
Boundary conditions
Civil Engineering
Classical Mechanics
Computational fluid dynamics
Computer simulation
Conjugates
Fluid flow
Heat flux
Heat transfer
Hydrophobic surfaces
Hydrophobicity
Mechanical Engineering
Microchannels
Nanofluids
Nanoparticles
Physics
Physics and Astronomy
Reynolds number
Slip
Temperature distribution
Temperature effects
Thick walls
Velocity distribution
Wall thickness
title Lattice Boltzmann simulation of nanofluid conjugate heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20of%20nanofluid%20conjugate%20heat%20transfer%20in%20a%20wide%20microchannel:%20effect%20of%20temperature%20jump,%20axial%20conduction%20and%20viscous%20dissipation&rft.jtitle=Meccanica%20(Milan)&rft.au=Alipour%20Lalami,%20Ali&rft.date=2019-01-01&rft.volume=54&rft.issue=1-2&rft.spage=135&rft.epage=153&rft.pages=135-153&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-018-00937-6&rft_dat=%3Cproquest_cross%3E2175942180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175942180&rft_id=info:pmid/&rfr_iscdi=true