NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition

The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2019-09, Vol.29 (6), p.1-6
Hauptverfasser: Cyberey, Michael, Farrahi, Tannaz, Lu, Jiwei, Kerr, Anthony, Weikle, Robert M., Lichtenberger, Arthur W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 6
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Cyberey, Michael
Farrahi, Tannaz
Lu, Jiwei
Kerr, Anthony
Weikle, Robert M.
Lichtenberger, Arthur W.
description The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.
doi_str_mv 10.1109/TASC.2018.2884967
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2175666471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8561177</ieee_id><sourcerecordid>2175666471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jx2Zze7OznW-lUpFdp4XrLpRFLapGZbof56E1s8zcvwvDPwMHYLYgAgkmE6WowHUgAOJGKcGHvGeqA1RlKDPm-z0BChlOqSXYWwEgJijHWPzWc-LWfD0Xo2_Et8MVnwt32V78q6CnxO2br8oSX3hy6322_iD2UWeJo1n7Tjk7riD5Rt-CNt61B2rWt2UWTrQDen2Wcfz0_p-DWavr9MxqNplCtldlFstAaDCtEgLMkuVWJFLr2nxGRCapNAor3BIjfKGqlybAmpCk_o0Uur-uz-eHfb1F97Cju3qvdN1b50Eqw2xsQWWgqOVN7UITRUuG1TbrLm4EC4Tp3r1LlOnTupazt3x05JRP88agNgrfoFS35nRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175666471</pqid></control><display><type>article</type><title>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</title><source>IEEE Electronic Library (IEL)</source><creator>Cyberey, Michael ; Farrahi, Tannaz ; Lu, Jiwei ; Kerr, Anthony ; Weikle, Robert M. ; Lichtenberger, Arthur W.</creator><creatorcontrib>Cyberey, Michael ; Farrahi, Tannaz ; Lu, Jiwei ; Kerr, Anthony ; Weikle, Robert M. ; Lichtenberger, Arthur W.</creatorcontrib><description>The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2884967</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AlN ; Aluminum nitride ; Bias ; Cooling ; Critical current density ; Deposition ; Electrodes ; Energy management ; Frequency ranges ; III-V semiconductor materials ; Inductively coupled plasma ; Ion beams ; Junctions ; Magnetron sputtering ; NbTiN ; Niobium nitride ; Operating temperature ; Power consumption ; Power management ; reactive bias target ion beam deposition (RBTIBD) ; Refrigeration ; Silicon ; SIS (superconductors) ; State of the art ; Substrates ; Superconducting devices ; Superconductivity ; superconductor–insulator–superconductor (SIS) mixers ; terahertz (THz) detectors</subject><ispartof>IEEE transactions on applied superconductivity, 2019-09, Vol.29 (6), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</citedby><cites>FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</cites><orcidid>0000-0002-2814-3631 ; 0000-0002-4787-8510 ; 0000-0002-8535-2130 ; 0000-0002-1774-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8561177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8561177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cyberey, Michael</creatorcontrib><creatorcontrib>Farrahi, Tannaz</creatorcontrib><creatorcontrib>Lu, Jiwei</creatorcontrib><creatorcontrib>Kerr, Anthony</creatorcontrib><creatorcontrib>Weikle, Robert M.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><title>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.</description><subject>AlN</subject><subject>Aluminum nitride</subject><subject>Bias</subject><subject>Cooling</subject><subject>Critical current density</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Energy management</subject><subject>Frequency ranges</subject><subject>III-V semiconductor materials</subject><subject>Inductively coupled plasma</subject><subject>Ion beams</subject><subject>Junctions</subject><subject>Magnetron sputtering</subject><subject>NbTiN</subject><subject>Niobium nitride</subject><subject>Operating temperature</subject><subject>Power consumption</subject><subject>Power management</subject><subject>reactive bias target ion beam deposition (RBTIBD)</subject><subject>Refrigeration</subject><subject>Silicon</subject><subject>SIS (superconductors)</subject><subject>State of the art</subject><subject>Substrates</subject><subject>Superconducting devices</subject><subject>Superconductivity</subject><subject>superconductor–insulator–superconductor (SIS) mixers</subject><subject>terahertz (THz) detectors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jx2Zze7OznW-lUpFdp4XrLpRFLapGZbof56E1s8zcvwvDPwMHYLYgAgkmE6WowHUgAOJGKcGHvGeqA1RlKDPm-z0BChlOqSXYWwEgJijHWPzWc-LWfD0Xo2_Et8MVnwt32V78q6CnxO2br8oSX3hy6322_iD2UWeJo1n7Tjk7riD5Rt-CNt61B2rWt2UWTrQDen2Wcfz0_p-DWavr9MxqNplCtldlFstAaDCtEgLMkuVWJFLr2nxGRCapNAor3BIjfKGqlybAmpCk_o0Uur-uz-eHfb1F97Cju3qvdN1b50Eqw2xsQWWgqOVN7UITRUuG1TbrLm4EC4Tp3r1LlOnTupazt3x05JRP88agNgrfoFS35nRg</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cyberey, Michael</creator><creator>Farrahi, Tannaz</creator><creator>Lu, Jiwei</creator><creator>Kerr, Anthony</creator><creator>Weikle, Robert M.</creator><creator>Lichtenberger, Arthur W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2814-3631</orcidid><orcidid>https://orcid.org/0000-0002-4787-8510</orcidid><orcidid>https://orcid.org/0000-0002-8535-2130</orcidid><orcidid>https://orcid.org/0000-0002-1774-9769</orcidid></search><sort><creationdate>20190901</creationdate><title>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</title><author>Cyberey, Michael ; Farrahi, Tannaz ; Lu, Jiwei ; Kerr, Anthony ; Weikle, Robert M. ; Lichtenberger, Arthur W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AlN</topic><topic>Aluminum nitride</topic><topic>Bias</topic><topic>Cooling</topic><topic>Critical current density</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Energy management</topic><topic>Frequency ranges</topic><topic>III-V semiconductor materials</topic><topic>Inductively coupled plasma</topic><topic>Ion beams</topic><topic>Junctions</topic><topic>Magnetron sputtering</topic><topic>NbTiN</topic><topic>Niobium nitride</topic><topic>Operating temperature</topic><topic>Power consumption</topic><topic>Power management</topic><topic>reactive bias target ion beam deposition (RBTIBD)</topic><topic>Refrigeration</topic><topic>Silicon</topic><topic>SIS (superconductors)</topic><topic>State of the art</topic><topic>Substrates</topic><topic>Superconducting devices</topic><topic>Superconductivity</topic><topic>superconductor–insulator–superconductor (SIS) mixers</topic><topic>terahertz (THz) detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cyberey, Michael</creatorcontrib><creatorcontrib>Farrahi, Tannaz</creatorcontrib><creatorcontrib>Lu, Jiwei</creatorcontrib><creatorcontrib>Kerr, Anthony</creatorcontrib><creatorcontrib>Weikle, Robert M.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cyberey, Michael</au><au>Farrahi, Tannaz</au><au>Lu, Jiwei</au><au>Kerr, Anthony</au><au>Weikle, Robert M.</au><au>Lichtenberger, Arthur W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>6</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2018.2884967</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2814-3631</orcidid><orcidid>https://orcid.org/0000-0002-4787-8510</orcidid><orcidid>https://orcid.org/0000-0002-8535-2130</orcidid><orcidid>https://orcid.org/0000-0002-1774-9769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-09, Vol.29 (6), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2175666471
source IEEE Electronic Library (IEL)
subjects AlN
Aluminum nitride
Bias
Cooling
Critical current density
Deposition
Electrodes
Energy management
Frequency ranges
III-V semiconductor materials
Inductively coupled plasma
Ion beams
Junctions
Magnetron sputtering
NbTiN
Niobium nitride
Operating temperature
Power consumption
Power management
reactive bias target ion beam deposition (RBTIBD)
Refrigeration
Silicon
SIS (superconductors)
State of the art
Substrates
Superconducting devices
Superconductivity
superconductor–insulator–superconductor (SIS) mixers
terahertz (THz) detectors
title NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NbTiN/AlN/NbTiN%20SIS%20Junctions%20Realized%20by%20Reactive%20Bias%20Target%20Ion%20Beam%20Deposition&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Cyberey,%20Michael&rft.date=2019-09-01&rft.volume=29&rft.issue=6&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2884967&rft_dat=%3Cproquest_RIE%3E2175666471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175666471&rft_id=info:pmid/&rft_ieee_id=8561177&rfr_iscdi=true