NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition
The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2019-09, Vol.29 (6), p.1-6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Cyberey, Michael Farrahi, Tannaz Lu, Jiwei Kerr, Anthony Weikle, Robert M. Lichtenberger, Arthur W. |
description | The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications. |
doi_str_mv | 10.1109/TASC.2018.2884967 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2175666471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8561177</ieee_id><sourcerecordid>2175666471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jx2Zze7OznW-lUpFdp4XrLpRFLapGZbof56E1s8zcvwvDPwMHYLYgAgkmE6WowHUgAOJGKcGHvGeqA1RlKDPm-z0BChlOqSXYWwEgJijHWPzWc-LWfD0Xo2_Et8MVnwt32V78q6CnxO2br8oSX3hy6322_iD2UWeJo1n7Tjk7riD5Rt-CNt61B2rWt2UWTrQDen2Wcfz0_p-DWavr9MxqNplCtldlFstAaDCtEgLMkuVWJFLr2nxGRCapNAor3BIjfKGqlybAmpCk_o0Uur-uz-eHfb1F97Cju3qvdN1b50Eqw2xsQWWgqOVN7UITRUuG1TbrLm4EC4Tp3r1LlOnTupazt3x05JRP88agNgrfoFS35nRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175666471</pqid></control><display><type>article</type><title>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</title><source>IEEE Electronic Library (IEL)</source><creator>Cyberey, Michael ; Farrahi, Tannaz ; Lu, Jiwei ; Kerr, Anthony ; Weikle, Robert M. ; Lichtenberger, Arthur W.</creator><creatorcontrib>Cyberey, Michael ; Farrahi, Tannaz ; Lu, Jiwei ; Kerr, Anthony ; Weikle, Robert M. ; Lichtenberger, Arthur W.</creatorcontrib><description>The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2884967</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AlN ; Aluminum nitride ; Bias ; Cooling ; Critical current density ; Deposition ; Electrodes ; Energy management ; Frequency ranges ; III-V semiconductor materials ; Inductively coupled plasma ; Ion beams ; Junctions ; Magnetron sputtering ; NbTiN ; Niobium nitride ; Operating temperature ; Power consumption ; Power management ; reactive bias target ion beam deposition (RBTIBD) ; Refrigeration ; Silicon ; SIS (superconductors) ; State of the art ; Substrates ; Superconducting devices ; Superconductivity ; superconductor–insulator–superconductor (SIS) mixers ; terahertz (THz) detectors</subject><ispartof>IEEE transactions on applied superconductivity, 2019-09, Vol.29 (6), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</citedby><cites>FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</cites><orcidid>0000-0002-2814-3631 ; 0000-0002-4787-8510 ; 0000-0002-8535-2130 ; 0000-0002-1774-9769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8561177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8561177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cyberey, Michael</creatorcontrib><creatorcontrib>Farrahi, Tannaz</creatorcontrib><creatorcontrib>Lu, Jiwei</creatorcontrib><creatorcontrib>Kerr, Anthony</creatorcontrib><creatorcontrib>Weikle, Robert M.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><title>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.</description><subject>AlN</subject><subject>Aluminum nitride</subject><subject>Bias</subject><subject>Cooling</subject><subject>Critical current density</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Energy management</subject><subject>Frequency ranges</subject><subject>III-V semiconductor materials</subject><subject>Inductively coupled plasma</subject><subject>Ion beams</subject><subject>Junctions</subject><subject>Magnetron sputtering</subject><subject>NbTiN</subject><subject>Niobium nitride</subject><subject>Operating temperature</subject><subject>Power consumption</subject><subject>Power management</subject><subject>reactive bias target ion beam deposition (RBTIBD)</subject><subject>Refrigeration</subject><subject>Silicon</subject><subject>SIS (superconductors)</subject><subject>State of the art</subject><subject>Substrates</subject><subject>Superconducting devices</subject><subject>Superconductivity</subject><subject>superconductor–insulator–superconductor (SIS) mixers</subject><subject>terahertz (THz) detectors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jx2Zze7OznW-lUpFdp4XrLpRFLapGZbof56E1s8zcvwvDPwMHYLYgAgkmE6WowHUgAOJGKcGHvGeqA1RlKDPm-z0BChlOqSXYWwEgJijHWPzWc-LWfD0Xo2_Et8MVnwt32V78q6CnxO2br8oSX3hy6322_iD2UWeJo1n7Tjk7riD5Rt-CNt61B2rWt2UWTrQDen2Wcfz0_p-DWavr9MxqNplCtldlFstAaDCtEgLMkuVWJFLr2nxGRCapNAor3BIjfKGqlybAmpCk_o0Uur-uz-eHfb1F97Cju3qvdN1b50Eqw2xsQWWgqOVN7UITRUuG1TbrLm4EC4Tp3r1LlOnTupazt3x05JRP88agNgrfoFS35nRg</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Cyberey, Michael</creator><creator>Farrahi, Tannaz</creator><creator>Lu, Jiwei</creator><creator>Kerr, Anthony</creator><creator>Weikle, Robert M.</creator><creator>Lichtenberger, Arthur W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2814-3631</orcidid><orcidid>https://orcid.org/0000-0002-4787-8510</orcidid><orcidid>https://orcid.org/0000-0002-8535-2130</orcidid><orcidid>https://orcid.org/0000-0002-1774-9769</orcidid></search><sort><creationdate>20190901</creationdate><title>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</title><author>Cyberey, Michael ; Farrahi, Tannaz ; Lu, Jiwei ; Kerr, Anthony ; Weikle, Robert M. ; Lichtenberger, Arthur W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4655168388681de7d3970c2bbe96a02569195b68fc637623c8d3923fbe8b8b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AlN</topic><topic>Aluminum nitride</topic><topic>Bias</topic><topic>Cooling</topic><topic>Critical current density</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Energy management</topic><topic>Frequency ranges</topic><topic>III-V semiconductor materials</topic><topic>Inductively coupled plasma</topic><topic>Ion beams</topic><topic>Junctions</topic><topic>Magnetron sputtering</topic><topic>NbTiN</topic><topic>Niobium nitride</topic><topic>Operating temperature</topic><topic>Power consumption</topic><topic>Power management</topic><topic>reactive bias target ion beam deposition (RBTIBD)</topic><topic>Refrigeration</topic><topic>Silicon</topic><topic>SIS (superconductors)</topic><topic>State of the art</topic><topic>Substrates</topic><topic>Superconducting devices</topic><topic>Superconductivity</topic><topic>superconductor–insulator–superconductor (SIS) mixers</topic><topic>terahertz (THz) detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cyberey, Michael</creatorcontrib><creatorcontrib>Farrahi, Tannaz</creatorcontrib><creatorcontrib>Lu, Jiwei</creatorcontrib><creatorcontrib>Kerr, Anthony</creatorcontrib><creatorcontrib>Weikle, Robert M.</creatorcontrib><creatorcontrib>Lichtenberger, Arthur W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cyberey, Michael</au><au>Farrahi, Tannaz</au><au>Lu, Jiwei</au><au>Kerr, Anthony</au><au>Weikle, Robert M.</au><au>Lichtenberger, Arthur W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>6</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The current state-of-the-art approach for superconductor-insulator-superconductor (SIS) junction fabrication is based on magnetron sputtering and the Gurvitch Al overlayer trilayer process, where an Al overlayer is deposited onto the Nb base electrode in order to subsequently grow a critical ~1-nm AlO x or AlN tunnel barrier. While the switch from AlO x to AlN barriers has significantly increased the achievable critical current density, and significant research has been performed to understand and optimize inductively coupled plasma AlN growth, the use of Nb electrodes provides an upper limit to the frequency range for low-noise operation when employed in terahertz (THz) mixer applications and has led to the study and use of alternative materials with higher transition temperatures (T C ) such as NbN and NbTiN. The Nb electrodes also impose stringent cooling requirements; replacement of both electrodes with higher T C materials can increase the required device operating temperature to 10 K, thus reducing the power consumption of the refrigeration system, a building block for the realization of more energy efficient superconducting computing systems, such as those based on single-flux-quantum logic. In this work, we have departed from conventional SIS material growth techniques through the use of an alternative material deposition technology-reactive bias target ion beam deposition (RBTIBD)-that offers unique capabilities to tailor materials and interfaces. Using RBTIBD technology, we have realized the first ever NbTiN/AlN/NbTiN SIS junctions with highest yet reported sum-gap voltages exceeding 5.0 mV, potentially extending the theoretical limit of low-loss SIS mixing applications beyond 1.2 THz and relaxing the cooling requirements for superconducting device applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2018.2884967</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2814-3631</orcidid><orcidid>https://orcid.org/0000-0002-4787-8510</orcidid><orcidid>https://orcid.org/0000-0002-8535-2130</orcidid><orcidid>https://orcid.org/0000-0002-1774-9769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-09, Vol.29 (6), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2175666471 |
source | IEEE Electronic Library (IEL) |
subjects | AlN Aluminum nitride Bias Cooling Critical current density Deposition Electrodes Energy management Frequency ranges III-V semiconductor materials Inductively coupled plasma Ion beams Junctions Magnetron sputtering NbTiN Niobium nitride Operating temperature Power consumption Power management reactive bias target ion beam deposition (RBTIBD) Refrigeration Silicon SIS (superconductors) State of the art Substrates Superconducting devices Superconductivity superconductor–insulator–superconductor (SIS) mixers terahertz (THz) detectors |
title | NbTiN/AlN/NbTiN SIS Junctions Realized by Reactive Bias Target Ion Beam Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NbTiN/AlN/NbTiN%20SIS%20Junctions%20Realized%20by%20Reactive%20Bias%20Target%20Ion%20Beam%20Deposition&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Cyberey,%20Michael&rft.date=2019-09-01&rft.volume=29&rft.issue=6&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2884967&rft_dat=%3Cproquest_RIE%3E2175666471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175666471&rft_id=info:pmid/&rft_ieee_id=8561177&rfr_iscdi=true |