Robust Optimization Over Time by Learning Problem Space Characteristics
Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2019-02, Vol.23 (1), p.143-155 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 143 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 23 |
creator | Yazdani, Danial Nguyen, Trung Thanh Branke, Jurgen |
description | Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms. |
doi_str_mv | 10.1109/TEVC.2018.2843566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2175407337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8371222</ieee_id><sourcerecordid>2175407337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJLvJ5ihLrUKholW8hWR3qindD5OtUH-9W1o8zTA878zwEHINbALA9N1y-l5MOIN8wvNUZFKekBHoFBLGuDwdepbrRKn845xcxLhmDNIM9IjMXlq3jT1ddL2v_a_tfdvQxQ8GuvQ1Urejc7Sh8c0nfQ6t22BNXztbIi2-bLBlj8HH3pfxkpyt7Cbi1bGOydvDdFk8JvPF7Km4nyelELJPJFSAK6a0qFjFXFayTFkHMivLSjHnUDsNmFfDe8Mgt1WmKolSaGFFyrUQY3J72NuF9nuLsTfrdhua4aThoLKUKSHUQMGBKkMbY8CV6YKvbdgZYGbvy-x9mb0vc_Q1ZG4OGY-I_3wuFHDOxR8os2Zx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175407337</pqid></control><display><type>article</type><title>Robust Optimization Over Time by Learning Problem Space Characteristics</title><source>IEEE Electronic Library (IEL)</source><creator>Yazdani, Danial ; Nguyen, Trung Thanh ; Branke, Jurgen</creator><creatorcontrib>Yazdani, Danial ; Nguyen, Trung Thanh ; Branke, Jurgen</creatorcontrib><description>Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2018.2843566</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Dynamic optimization problems (DOPs) ; Fitness ; Hypercubes ; Identification methods ; Nonlinear programming ; Optimization ; particle swarm optimization (PSO) ; Prediction algorithms ; robust optimization over time (ROOT) ; Robustness ; Robustness (mathematics) ; State of the art ; Switches ; tracking moving optima (TMO)</subject><ispartof>IEEE transactions on evolutionary computation, 2019-02, Vol.23 (1), p.143-155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</citedby><cites>FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</cites><orcidid>0000-0002-7799-5013 ; 0000-0002-4343-5878 ; 0000-0002-3268-1790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8371222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8371222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yazdani, Danial</creatorcontrib><creatorcontrib>Nguyen, Trung Thanh</creatorcontrib><creatorcontrib>Branke, Jurgen</creatorcontrib><title>Robust Optimization Over Time by Learning Problem Space Characteristics</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Dynamic optimization problems (DOPs)</subject><subject>Fitness</subject><subject>Hypercubes</subject><subject>Identification methods</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Prediction algorithms</subject><subject>robust optimization over time (ROOT)</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>State of the art</subject><subject>Switches</subject><subject>tracking moving optima (TMO)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJLvJ5ihLrUKholW8hWR3qindD5OtUH-9W1o8zTA878zwEHINbALA9N1y-l5MOIN8wvNUZFKekBHoFBLGuDwdepbrRKn845xcxLhmDNIM9IjMXlq3jT1ddL2v_a_tfdvQxQ8GuvQ1Urejc7Sh8c0nfQ6t22BNXztbIi2-bLBlj8HH3pfxkpyt7Cbi1bGOydvDdFk8JvPF7Km4nyelELJPJFSAK6a0qFjFXFayTFkHMivLSjHnUDsNmFfDe8Mgt1WmKolSaGFFyrUQY3J72NuF9nuLsTfrdhua4aThoLKUKSHUQMGBKkMbY8CV6YKvbdgZYGbvy-x9mb0vc_Q1ZG4OGY-I_3wuFHDOxR8os2Zx</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Yazdani, Danial</creator><creator>Nguyen, Trung Thanh</creator><creator>Branke, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7799-5013</orcidid><orcidid>https://orcid.org/0000-0002-4343-5878</orcidid><orcidid>https://orcid.org/0000-0002-3268-1790</orcidid></search><sort><creationdate>20190201</creationdate><title>Robust Optimization Over Time by Learning Problem Space Characteristics</title><author>Yazdani, Danial ; Nguyen, Trung Thanh ; Branke, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Dynamic optimization problems (DOPs)</topic><topic>Fitness</topic><topic>Hypercubes</topic><topic>Identification methods</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Prediction algorithms</topic><topic>robust optimization over time (ROOT)</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>State of the art</topic><topic>Switches</topic><topic>tracking moving optima (TMO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Danial</creatorcontrib><creatorcontrib>Nguyen, Trung Thanh</creatorcontrib><creatorcontrib>Branke, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yazdani, Danial</au><au>Nguyen, Trung Thanh</au><au>Branke, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Optimization Over Time by Learning Problem Space Characteristics</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2018.2843566</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7799-5013</orcidid><orcidid>https://orcid.org/0000-0002-4343-5878</orcidid><orcidid>https://orcid.org/0000-0002-3268-1790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2019-02, Vol.23 (1), p.143-155 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_journals_2175407337 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms Dynamic optimization problems (DOPs) Fitness Hypercubes Identification methods Nonlinear programming Optimization particle swarm optimization (PSO) Prediction algorithms robust optimization over time (ROOT) Robustness Robustness (mathematics) State of the art Switches tracking moving optima (TMO) |
title | Robust Optimization Over Time by Learning Problem Space Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Optimization%20Over%20Time%20by%20Learning%20Problem%20Space%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Yazdani,%20Danial&rft.date=2019-02-01&rft.volume=23&rft.issue=1&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2018.2843566&rft_dat=%3Cproquest_RIE%3E2175407337%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175407337&rft_id=info:pmid/&rft_ieee_id=8371222&rfr_iscdi=true |