Robust Optimization Over Time by Learning Problem Space Characteristics

Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2019-02, Vol.23 (1), p.143-155
Hauptverfasser: Yazdani, Danial, Nguyen, Trung Thanh, Branke, Jurgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 143
container_title IEEE transactions on evolutionary computation
container_volume 23
creator Yazdani, Danial
Nguyen, Trung Thanh
Branke, Jurgen
description Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.
doi_str_mv 10.1109/TEVC.2018.2843566
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2175407337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8371222</ieee_id><sourcerecordid>2175407337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJLvJ5ihLrUKholW8hWR3qindD5OtUH-9W1o8zTA878zwEHINbALA9N1y-l5MOIN8wvNUZFKekBHoFBLGuDwdepbrRKn845xcxLhmDNIM9IjMXlq3jT1ddL2v_a_tfdvQxQ8GuvQ1Urejc7Sh8c0nfQ6t22BNXztbIi2-bLBlj8HH3pfxkpyt7Cbi1bGOydvDdFk8JvPF7Km4nyelELJPJFSAK6a0qFjFXFayTFkHMivLSjHnUDsNmFfDe8Mgt1WmKolSaGFFyrUQY3J72NuF9nuLsTfrdhua4aThoLKUKSHUQMGBKkMbY8CV6YKvbdgZYGbvy-x9mb0vc_Q1ZG4OGY-I_3wuFHDOxR8os2Zx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175407337</pqid></control><display><type>article</type><title>Robust Optimization Over Time by Learning Problem Space Characteristics</title><source>IEEE Electronic Library (IEL)</source><creator>Yazdani, Danial ; Nguyen, Trung Thanh ; Branke, Jurgen</creator><creatorcontrib>Yazdani, Danial ; Nguyen, Trung Thanh ; Branke, Jurgen</creatorcontrib><description>Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2018.2843566</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Dynamic optimization problems (DOPs) ; Fitness ; Hypercubes ; Identification methods ; Nonlinear programming ; Optimization ; particle swarm optimization (PSO) ; Prediction algorithms ; robust optimization over time (ROOT) ; Robustness ; Robustness (mathematics) ; State of the art ; Switches ; tracking moving optima (TMO)</subject><ispartof>IEEE transactions on evolutionary computation, 2019-02, Vol.23 (1), p.143-155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</citedby><cites>FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</cites><orcidid>0000-0002-7799-5013 ; 0000-0002-4343-5878 ; 0000-0002-3268-1790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8371222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8371222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yazdani, Danial</creatorcontrib><creatorcontrib>Nguyen, Trung Thanh</creatorcontrib><creatorcontrib>Branke, Jurgen</creatorcontrib><title>Robust Optimization Over Time by Learning Problem Space Characteristics</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Dynamic optimization problems (DOPs)</subject><subject>Fitness</subject><subject>Hypercubes</subject><subject>Identification methods</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Prediction algorithms</subject><subject>robust optimization over time (ROOT)</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>State of the art</subject><subject>Switches</subject><subject>tracking moving optima (TMO)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NJLvJ5ihLrUKholW8hWR3qindD5OtUH-9W1o8zTA878zwEHINbALA9N1y-l5MOIN8wvNUZFKekBHoFBLGuDwdepbrRKn845xcxLhmDNIM9IjMXlq3jT1ddL2v_a_tfdvQxQ8GuvQ1Urejc7Sh8c0nfQ6t22BNXztbIi2-bLBlj8HH3pfxkpyt7Cbi1bGOydvDdFk8JvPF7Km4nyelELJPJFSAK6a0qFjFXFayTFkHMivLSjHnUDsNmFfDe8Mgt1WmKolSaGFFyrUQY3J72NuF9nuLsTfrdhua4aThoLKUKSHUQMGBKkMbY8CV6YKvbdgZYGbvy-x9mb0vc_Q1ZG4OGY-I_3wuFHDOxR8os2Zx</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Yazdani, Danial</creator><creator>Nguyen, Trung Thanh</creator><creator>Branke, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7799-5013</orcidid><orcidid>https://orcid.org/0000-0002-4343-5878</orcidid><orcidid>https://orcid.org/0000-0002-3268-1790</orcidid></search><sort><creationdate>20190201</creationdate><title>Robust Optimization Over Time by Learning Problem Space Characteristics</title><author>Yazdani, Danial ; Nguyen, Trung Thanh ; Branke, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-61d1ef0793d0d0b5c057ab165ccd70bbe9b91e8d014cd78ad57d6e6393a342933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Dynamic optimization problems (DOPs)</topic><topic>Fitness</topic><topic>Hypercubes</topic><topic>Identification methods</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Prediction algorithms</topic><topic>robust optimization over time (ROOT)</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>State of the art</topic><topic>Switches</topic><topic>tracking moving optima (TMO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani, Danial</creatorcontrib><creatorcontrib>Nguyen, Trung Thanh</creatorcontrib><creatorcontrib>Branke, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yazdani, Danial</au><au>Nguyen, Trung Thanh</au><au>Branke, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Optimization Over Time by Learning Problem Space Characteristics</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>23</volume><issue>1</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Robust optimization over time is a new way to tackle dynamic optimization problems where the goal is to find solutions that remain acceptable over an extended period of time. The state-of-the-art methods in this domain try to identify robust solutions based on their future predicted fitness values. However, predicting future fitness values is difficult and error prone. In this paper, we propose a new framework based on a multipopulation method in which subpopulations are responsible for tracking peaks and also gathering characteristic information about them. When the quality of the current robust solution falls below the acceptance threshold, the algorithm chooses the next robust solution based on the collected information. We propose four different strategies to select the next solution. The experimental results on benchmark problems show that our newly proposed methods perform significantly better than existing algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2018.2843566</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7799-5013</orcidid><orcidid>https://orcid.org/0000-0002-4343-5878</orcidid><orcidid>https://orcid.org/0000-0002-3268-1790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2019-02, Vol.23 (1), p.143-155
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_journals_2175407337
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Dynamic optimization problems (DOPs)
Fitness
Hypercubes
Identification methods
Nonlinear programming
Optimization
particle swarm optimization (PSO)
Prediction algorithms
robust optimization over time (ROOT)
Robustness
Robustness (mathematics)
State of the art
Switches
tracking moving optima (TMO)
title Robust Optimization Over Time by Learning Problem Space Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Optimization%20Over%20Time%20by%20Learning%20Problem%20Space%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Yazdani,%20Danial&rft.date=2019-02-01&rft.volume=23&rft.issue=1&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2018.2843566&rft_dat=%3Cproquest_RIE%3E2175407337%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175407337&rft_id=info:pmid/&rft_ieee_id=8371222&rfr_iscdi=true