Analysis of high melt‐strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology
Three grades of poly(ethylene terephthalate) (PET) produced by different synthesis routes and with different molar masses were reactively extruded with two tetra‐functional chain extenders, i.e., pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM). The preferred reacti...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2019-02, Vol.59 (2), p.396-410 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 2 |
container_start_page | 396 |
container_title | Polymer engineering and science |
container_volume | 59 |
creator | Kruse, Matthias Wang, Peng Shah, Rajas Sudhir Wagner, Manfred H. |
description | Three grades of poly(ethylene terephthalate) (PET) produced by different synthesis routes and with different molar masses were reactively extruded with two tetra‐functional chain extenders, i.e., pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM). The preferred reactivity of the coupling agents led to different long‐chain branched (LCB) structures, which can be related to different hydroxyl and carboxyl end group concentrations of the PET grades investigated. The complex viscosity and the transient elongational viscosity increased by up to two decades. Both the activation energy of flow and the loss angle indicate long‐chain branching. A more quantitative assessment of the extent of strain hardening was achieved by application of the molecular stress function (MSF) model. The two material parameters of the model revealed different behaviors depending on the chain extender used. The initial molar mass of PET and the concentration of end groups, i.e., hydroxyl and carboxyl, determine the structure of the polymer molecules. PMDA proved to be an excellent coupling agent for industrial processing which induces reproducibly either a star‐like, comb‐like, or randomly branched structure depending on the concentration of coupling agent added and the hydroxyl concentration of the PET employed. TGDDM led to a hyperbranched structure. POLYM. ENG. SCI., 59:396–410, 2019. © 2018 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.24936 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2175330003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577028833</galeid><sourcerecordid>A577028833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4736-f0d61c1b557010d16130edbc1b52d02772640ffa9316ecb04c20d1f576252b213</originalsourceid><addsrcrecordid>eNp1kt9qFDEUxoMouFYvfIOANxY62_yZf3u5lFYLRaXqdchkTmZSspMxyahz10fwGX0SM11BF7bkIvDx-07O-XIQek3JmhLCzkcY1izf8PIJWtEirzNW8vwpWhHCWcbrun6OXoRwRxLLi80K3W8HaedgAnYa96br8Q5s_H3_K0QPQxd7PDo7v4XYzxYGwBE8jH3spZURTvHoXTspaHEzYw9SRfMdFlFBCGboFjn0ID2WQ4vBuqGT0bj0JPY9OOu6-SV6pqUN8OrvfYK-Xl1-uXif3Xx8d32xvclUXvEy06QtqaJNUVSEkpaWlBNom0VhLWFVxcqcaC03nJagGpIrlihdVCUrWMMoP0Fv9nVTd98mCFHcucmnToJgtCo4T5Hwf1QnLQgzaBe9VDsTlNgWVUVYXfOFyo5QXcrHyzQjaJPkA359hE-nhZ1RRw2nB4bERPgZOzmFIK4_3x6yZ_-xzZRyfwg_pM-MYW85Vlp5F4IHLUZvdtLPghKxrJBIKyQeViix53v2R-pvfhwUny4_7B1_ALpix3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175330003</pqid></control><display><type>article</type><title>Analysis of high melt‐strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology</title><source>Wiley Journals</source><creator>Kruse, Matthias ; Wang, Peng ; Shah, Rajas Sudhir ; Wagner, Manfred H.</creator><creatorcontrib>Kruse, Matthias ; Wang, Peng ; Shah, Rajas Sudhir ; Wagner, Manfred H.</creatorcontrib><description>Three grades of poly(ethylene terephthalate) (PET) produced by different synthesis routes and with different molar masses were reactively extruded with two tetra‐functional chain extenders, i.e., pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM). The preferred reactivity of the coupling agents led to different long‐chain branched (LCB) structures, which can be related to different hydroxyl and carboxyl end group concentrations of the PET grades investigated. The complex viscosity and the transient elongational viscosity increased by up to two decades. Both the activation energy of flow and the loss angle indicate long‐chain branching. A more quantitative assessment of the extent of strain hardening was achieved by application of the molecular stress function (MSF) model. The two material parameters of the model revealed different behaviors depending on the chain extender used. The initial molar mass of PET and the concentration of end groups, i.e., hydroxyl and carboxyl, determine the structure of the polymer molecules. PMDA proved to be an excellent coupling agent for industrial processing which induces reproducibly either a star‐like, comb‐like, or randomly branched structure depending on the concentration of coupling agent added and the hydroxyl concentration of the PET employed. TGDDM led to a hyperbranched structure. POLYM. ENG. SCI., 59:396–410, 2019. © 2018 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24936</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Activation energy ; Biphenyl (Compound) ; Chain branching ; Coupling (molecular) ; Coupling agents ; Dianhydrides ; Diphenyl methane ; Elongation ; Ethylene ; Extrusion ; Hydroxides ; Mechanical properties ; Methane ; Molecular structure ; Polyethylene terephthalate ; Polymer industry ; Polymers ; Production processes ; Reactive processing ; Rheological properties ; Rheology ; Strain hardening ; Stress functions ; Viscosity</subject><ispartof>Polymer engineering and science, 2019-02, Vol.59 (2), p.396-410</ispartof><rights>2018 Society of Plastics Engineers</rights><rights>COPYRIGHT 2019 Society of Plastics Engineers, Inc.</rights><rights>2019 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4736-f0d61c1b557010d16130edbc1b52d02772640ffa9316ecb04c20d1f576252b213</citedby><cites>FETCH-LOGICAL-c4736-f0d61c1b557010d16130edbc1b52d02772640ffa9316ecb04c20d1f576252b213</cites><orcidid>0000-0002-3693-3211 ; 0000-0002-3849-0696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.24936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.24936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kruse, Matthias</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Shah, Rajas Sudhir</creatorcontrib><creatorcontrib>Wagner, Manfred H.</creatorcontrib><title>Analysis of high melt‐strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology</title><title>Polymer engineering and science</title><description>Three grades of poly(ethylene terephthalate) (PET) produced by different synthesis routes and with different molar masses were reactively extruded with two tetra‐functional chain extenders, i.e., pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM). The preferred reactivity of the coupling agents led to different long‐chain branched (LCB) structures, which can be related to different hydroxyl and carboxyl end group concentrations of the PET grades investigated. The complex viscosity and the transient elongational viscosity increased by up to two decades. Both the activation energy of flow and the loss angle indicate long‐chain branching. A more quantitative assessment of the extent of strain hardening was achieved by application of the molecular stress function (MSF) model. The two material parameters of the model revealed different behaviors depending on the chain extender used. The initial molar mass of PET and the concentration of end groups, i.e., hydroxyl and carboxyl, determine the structure of the polymer molecules. PMDA proved to be an excellent coupling agent for industrial processing which induces reproducibly either a star‐like, comb‐like, or randomly branched structure depending on the concentration of coupling agent added and the hydroxyl concentration of the PET employed. TGDDM led to a hyperbranched structure. POLYM. ENG. SCI., 59:396–410, 2019. © 2018 Society of Plastics Engineers</description><subject>Activation energy</subject><subject>Biphenyl (Compound)</subject><subject>Chain branching</subject><subject>Coupling (molecular)</subject><subject>Coupling agents</subject><subject>Dianhydrides</subject><subject>Diphenyl methane</subject><subject>Elongation</subject><subject>Ethylene</subject><subject>Extrusion</subject><subject>Hydroxides</subject><subject>Mechanical properties</subject><subject>Methane</subject><subject>Molecular structure</subject><subject>Polyethylene terephthalate</subject><subject>Polymer industry</subject><subject>Polymers</subject><subject>Production processes</subject><subject>Reactive processing</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Strain hardening</subject><subject>Stress functions</subject><subject>Viscosity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kt9qFDEUxoMouFYvfIOANxY62_yZf3u5lFYLRaXqdchkTmZSspMxyahz10fwGX0SM11BF7bkIvDx-07O-XIQek3JmhLCzkcY1izf8PIJWtEirzNW8vwpWhHCWcbrun6OXoRwRxLLi80K3W8HaedgAnYa96br8Q5s_H3_K0QPQxd7PDo7v4XYzxYGwBE8jH3spZURTvHoXTspaHEzYw9SRfMdFlFBCGboFjn0ID2WQ4vBuqGT0bj0JPY9OOu6-SV6pqUN8OrvfYK-Xl1-uXif3Xx8d32xvclUXvEy06QtqaJNUVSEkpaWlBNom0VhLWFVxcqcaC03nJagGpIrlihdVCUrWMMoP0Fv9nVTd98mCFHcucmnToJgtCo4T5Hwf1QnLQgzaBe9VDsTlNgWVUVYXfOFyo5QXcrHyzQjaJPkA359hE-nhZ1RRw2nB4bERPgZOzmFIK4_3x6yZ_-xzZRyfwg_pM-MYW85Vlp5F4IHLUZvdtLPghKxrJBIKyQeViix53v2R-pvfhwUny4_7B1_ALpix3o</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Kruse, Matthias</creator><creator>Wang, Peng</creator><creator>Shah, Rajas Sudhir</creator><creator>Wagner, Manfred H.</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3693-3211</orcidid><orcidid>https://orcid.org/0000-0002-3849-0696</orcidid></search><sort><creationdate>201902</creationdate><title>Analysis of high melt‐strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology</title><author>Kruse, Matthias ; Wang, Peng ; Shah, Rajas Sudhir ; Wagner, Manfred H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4736-f0d61c1b557010d16130edbc1b52d02772640ffa9316ecb04c20d1f576252b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Biphenyl (Compound)</topic><topic>Chain branching</topic><topic>Coupling (molecular)</topic><topic>Coupling agents</topic><topic>Dianhydrides</topic><topic>Diphenyl methane</topic><topic>Elongation</topic><topic>Ethylene</topic><topic>Extrusion</topic><topic>Hydroxides</topic><topic>Mechanical properties</topic><topic>Methane</topic><topic>Molecular structure</topic><topic>Polyethylene terephthalate</topic><topic>Polymer industry</topic><topic>Polymers</topic><topic>Production processes</topic><topic>Reactive processing</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Strain hardening</topic><topic>Stress functions</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Matthias</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Shah, Rajas Sudhir</creatorcontrib><creatorcontrib>Wagner, Manfred H.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Matthias</au><au>Wang, Peng</au><au>Shah, Rajas Sudhir</au><au>Wagner, Manfred H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of high melt‐strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology</atitle><jtitle>Polymer engineering and science</jtitle><date>2019-02</date><risdate>2019</risdate><volume>59</volume><issue>2</issue><spage>396</spage><epage>410</epage><pages>396-410</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Three grades of poly(ethylene terephthalate) (PET) produced by different synthesis routes and with different molar masses were reactively extruded with two tetra‐functional chain extenders, i.e., pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM). The preferred reactivity of the coupling agents led to different long‐chain branched (LCB) structures, which can be related to different hydroxyl and carboxyl end group concentrations of the PET grades investigated. The complex viscosity and the transient elongational viscosity increased by up to two decades. Both the activation energy of flow and the loss angle indicate long‐chain branching. A more quantitative assessment of the extent of strain hardening was achieved by application of the molecular stress function (MSF) model. The two material parameters of the model revealed different behaviors depending on the chain extender used. The initial molar mass of PET and the concentration of end groups, i.e., hydroxyl and carboxyl, determine the structure of the polymer molecules. PMDA proved to be an excellent coupling agent for industrial processing which induces reproducibly either a star‐like, comb‐like, or randomly branched structure depending on the concentration of coupling agent added and the hydroxyl concentration of the PET employed. TGDDM led to a hyperbranched structure. POLYM. ENG. SCI., 59:396–410, 2019. © 2018 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.24936</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3693-3211</orcidid><orcidid>https://orcid.org/0000-0002-3849-0696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2019-02, Vol.59 (2), p.396-410 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2175330003 |
source | Wiley Journals |
subjects | Activation energy Biphenyl (Compound) Chain branching Coupling (molecular) Coupling agents Dianhydrides Diphenyl methane Elongation Ethylene Extrusion Hydroxides Mechanical properties Methane Molecular structure Polyethylene terephthalate Polymer industry Polymers Production processes Reactive processing Rheological properties Rheology Strain hardening Stress functions Viscosity |
title | Analysis of high melt‐strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20high%20melt%E2%80%90strength%20poly(ethylene%20terephthalate)%20produced%20by%20reactive%20processing%20by%20shear%20and%20elongational%20rheology&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Kruse,%20Matthias&rft.date=2019-02&rft.volume=59&rft.issue=2&rft.spage=396&rft.epage=410&rft.pages=396-410&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.24936&rft_dat=%3Cgale_proqu%3EA577028833%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175330003&rft_id=info:pmid/&rft_galeid=A577028833&rfr_iscdi=true |