Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity

In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2019-02, Vol.59 (2), p.254-263
Hauptverfasser: Bagri, Laxmi Prasad, Saini, Rajesh K., Kumar Bajpai, Anil, Choubey, Rashmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 2
container_start_page 254
container_title Polymer engineering and science
container_volume 59
creator Bagri, Laxmi Prasad
Saini, Rajesh K.
Kumar Bajpai, Anil
Choubey, Rashmi
description In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers
doi_str_mv 10.1002/pen.24899
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2175328959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577028818</galeid><sourcerecordid>A577028818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</originalsourceid><addsrcrecordid>eNp10s1u1DAQB_AIgcRSOPAGlrhQqdk6zoftY1UVqFQBonC2HHuSuMrawXaW5sZD8AK8Gk-Ct8uhKy3ywZL1-89Yo8my1wVeFxiT8wnsmlSM8yfZqqgrlpOmrJ5mK4xLkpeMsefZixDucLJlzVfZ71szbsGjYdHe3S9yktFEQB6M7ZxXoNHkxuXt1thlRHJUbnDj6Z-fv0KUXg1I-cX1MCIrrVNuM7mQ0gFJq1GIs16Q61BrnIbeS51KO3uGds5DCGYLCXmwfRweEtJG00oVwRuZmqlotiYuL7NnnRwDvPp3n2Tf3l19vfyQ33x6f315cZOripY8b2hZE90wRnVbdQVv6rYodVNhTRktFCVKcVKptuxoTToKhHNoWiY1a0nRYV6eZG_2dSfvvs8Qorhzs7eppSAFrUvCeP1I9XIEsRtS9FJtTFDioqYUE8YKllR-RPVgwcvRWehMej7w6yM-HQ0bo44GTg8CyUS4j72cQxDXt18O7dkj287B2N30bTD9EMM-cqy08i4ED52YvNlIv4gCi92OibRj4mHHkj3f2x_pf8v_ofh89XGf-AsjQdXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175328959</pqid></control><display><type>article</type><title>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bagri, Laxmi Prasad ; Saini, Rajesh K. ; Kumar Bajpai, Anil ; Choubey, Rashmi</creator><creatorcontrib>Bagri, Laxmi Prasad ; Saini, Rajesh K. ; Kumar Bajpai, Anil ; Choubey, Rashmi</creatorcontrib><description>In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24899</identifier><language>eng</language><publisher>Newtown: Society of Plastics Engineers, Inc</publisher><subject>Amylases ; Antibacterial agents ; Bacteria ; Biodegradation ; Chemical composition ; Compressive strength ; Electron microscopy ; Enzyme activity ; Enzymes ; Fourier transforms ; Freeze thaw cycles ; Gravimetric analysis ; Hydroxyapatite ; Hydroxyapatites ; Materials research ; Microscopy ; Nanocomposites ; Organic chemistry ; Phosphates ; Polymers ; Polyvinyl alcohol ; Scanning electron microscopy ; Spectroscopy ; Toxicity</subject><ispartof>Polymer engineering and science, 2019-02, Vol.59 (2), p.254-263</ispartof><rights>2018 Society of Plastics Engineers</rights><rights>COPYRIGHT 2019 Society of Plastics Engineers, Inc.</rights><rights>2019 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</citedby><cites>FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.24899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.24899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bagri, Laxmi Prasad</creatorcontrib><creatorcontrib>Saini, Rajesh K.</creatorcontrib><creatorcontrib>Kumar Bajpai, Anil</creatorcontrib><creatorcontrib>Choubey, Rashmi</creatorcontrib><title>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</title><title>Polymer engineering and science</title><description>In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers</description><subject>Amylases</subject><subject>Antibacterial agents</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Chemical composition</subject><subject>Compressive strength</subject><subject>Electron microscopy</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Fourier transforms</subject><subject>Freeze thaw cycles</subject><subject>Gravimetric analysis</subject><subject>Hydroxyapatite</subject><subject>Hydroxyapatites</subject><subject>Materials research</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Organic chemistry</subject><subject>Phosphates</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Toxicity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10s1u1DAQB_AIgcRSOPAGlrhQqdk6zoftY1UVqFQBonC2HHuSuMrawXaW5sZD8AK8Gk-Ct8uhKy3ywZL1-89Yo8my1wVeFxiT8wnsmlSM8yfZqqgrlpOmrJ5mK4xLkpeMsefZixDucLJlzVfZ71szbsGjYdHe3S9yktFEQB6M7ZxXoNHkxuXt1thlRHJUbnDj6Z-fv0KUXg1I-cX1MCIrrVNuM7mQ0gFJq1GIs16Q61BrnIbeS51KO3uGds5DCGYLCXmwfRweEtJG00oVwRuZmqlotiYuL7NnnRwDvPp3n2Tf3l19vfyQ33x6f315cZOripY8b2hZE90wRnVbdQVv6rYodVNhTRktFCVKcVKptuxoTToKhHNoWiY1a0nRYV6eZG_2dSfvvs8Qorhzs7eppSAFrUvCeP1I9XIEsRtS9FJtTFDioqYUE8YKllR-RPVgwcvRWehMej7w6yM-HQ0bo44GTg8CyUS4j72cQxDXt18O7dkj287B2N30bTD9EMM-cqy08i4ED52YvNlIv4gCi92OibRj4mHHkj3f2x_pf8v_ofh89XGf-AsjQdXI</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Bagri, Laxmi Prasad</creator><creator>Saini, Rajesh K.</creator><creator>Kumar Bajpai, Anil</creator><creator>Choubey, Rashmi</creator><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201902</creationdate><title>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</title><author>Bagri, Laxmi Prasad ; Saini, Rajesh K. ; Kumar Bajpai, Anil ; Choubey, Rashmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amylases</topic><topic>Antibacterial agents</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Chemical composition</topic><topic>Compressive strength</topic><topic>Electron microscopy</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Fourier transforms</topic><topic>Freeze thaw cycles</topic><topic>Gravimetric analysis</topic><topic>Hydroxyapatite</topic><topic>Hydroxyapatites</topic><topic>Materials research</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Organic chemistry</topic><topic>Phosphates</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagri, Laxmi Prasad</creatorcontrib><creatorcontrib>Saini, Rajesh K.</creatorcontrib><creatorcontrib>Kumar Bajpai, Anil</creatorcontrib><creatorcontrib>Choubey, Rashmi</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagri, Laxmi Prasad</au><au>Saini, Rajesh K.</au><au>Kumar Bajpai, Anil</au><au>Choubey, Rashmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</atitle><jtitle>Polymer engineering and science</jtitle><date>2019-02</date><risdate>2019</risdate><volume>59</volume><issue>2</issue><spage>254</spage><epage>263</epage><pages>254-263</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Society of Plastics Engineers, Inc</pub><doi>10.1002/pen.24899</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2019-02, Vol.59 (2), p.254-263
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2175328959
source Wiley Online Library Journals Frontfile Complete
subjects Amylases
Antibacterial agents
Bacteria
Biodegradation
Chemical composition
Compressive strength
Electron microscopy
Enzyme activity
Enzymes
Fourier transforms
Freeze thaw cycles
Gravimetric analysis
Hydroxyapatite
Hydroxyapatites
Materials research
Microscopy
Nanocomposites
Organic chemistry
Phosphates
Polymers
Polyvinyl alcohol
Scanning electron microscopy
Spectroscopy
Toxicity
title Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20hydroxyapatite%20reinforced%20poly(vinyl%20alcohol)%E2%80%94starch%20cryogel%20nanocomposites%20and%20study%20of%20biodegradation,%20compressive%20strength%20and%20antibacterial%20activity&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Bagri,%20Laxmi%20Prasad&rft.date=2019-02&rft.volume=59&rft.issue=2&rft.spage=254&rft.epage=263&rft.pages=254-263&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.24899&rft_dat=%3Cgale_proqu%3EA577028818%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175328959&rft_id=info:pmid/&rft_galeid=A577028818&rfr_iscdi=true