Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity
In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macro...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2019-02, Vol.59 (2), p.254-263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 2 |
container_start_page | 254 |
container_title | Polymer engineering and science |
container_volume | 59 |
creator | Bagri, Laxmi Prasad Saini, Rajesh K. Kumar Bajpai, Anil Choubey, Rashmi |
description | In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.24899 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2175328959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A577028818</galeid><sourcerecordid>A577028818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</originalsourceid><addsrcrecordid>eNp10s1u1DAQB_AIgcRSOPAGlrhQqdk6zoftY1UVqFQBonC2HHuSuMrawXaW5sZD8AK8Gk-Ct8uhKy3ywZL1-89Yo8my1wVeFxiT8wnsmlSM8yfZqqgrlpOmrJ5mK4xLkpeMsefZixDucLJlzVfZ71szbsGjYdHe3S9yktFEQB6M7ZxXoNHkxuXt1thlRHJUbnDj6Z-fv0KUXg1I-cX1MCIrrVNuM7mQ0gFJq1GIs16Q61BrnIbeS51KO3uGds5DCGYLCXmwfRweEtJG00oVwRuZmqlotiYuL7NnnRwDvPp3n2Tf3l19vfyQ33x6f315cZOripY8b2hZE90wRnVbdQVv6rYodVNhTRktFCVKcVKptuxoTToKhHNoWiY1a0nRYV6eZG_2dSfvvs8Qorhzs7eppSAFrUvCeP1I9XIEsRtS9FJtTFDioqYUE8YKllR-RPVgwcvRWehMej7w6yM-HQ0bo44GTg8CyUS4j72cQxDXt18O7dkj287B2N30bTD9EMM-cqy08i4ED52YvNlIv4gCi92OibRj4mHHkj3f2x_pf8v_ofh89XGf-AsjQdXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175328959</pqid></control><display><type>article</type><title>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bagri, Laxmi Prasad ; Saini, Rajesh K. ; Kumar Bajpai, Anil ; Choubey, Rashmi</creator><creatorcontrib>Bagri, Laxmi Prasad ; Saini, Rajesh K. ; Kumar Bajpai, Anil ; Choubey, Rashmi</creatorcontrib><description>In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24899</identifier><language>eng</language><publisher>Newtown: Society of Plastics Engineers, Inc</publisher><subject>Amylases ; Antibacterial agents ; Bacteria ; Biodegradation ; Chemical composition ; Compressive strength ; Electron microscopy ; Enzyme activity ; Enzymes ; Fourier transforms ; Freeze thaw cycles ; Gravimetric analysis ; Hydroxyapatite ; Hydroxyapatites ; Materials research ; Microscopy ; Nanocomposites ; Organic chemistry ; Phosphates ; Polymers ; Polyvinyl alcohol ; Scanning electron microscopy ; Spectroscopy ; Toxicity</subject><ispartof>Polymer engineering and science, 2019-02, Vol.59 (2), p.254-263</ispartof><rights>2018 Society of Plastics Engineers</rights><rights>COPYRIGHT 2019 Society of Plastics Engineers, Inc.</rights><rights>2019 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</citedby><cites>FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.24899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.24899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bagri, Laxmi Prasad</creatorcontrib><creatorcontrib>Saini, Rajesh K.</creatorcontrib><creatorcontrib>Kumar Bajpai, Anil</creatorcontrib><creatorcontrib>Choubey, Rashmi</creatorcontrib><title>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</title><title>Polymer engineering and science</title><description>In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers</description><subject>Amylases</subject><subject>Antibacterial agents</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Chemical composition</subject><subject>Compressive strength</subject><subject>Electron microscopy</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Fourier transforms</subject><subject>Freeze thaw cycles</subject><subject>Gravimetric analysis</subject><subject>Hydroxyapatite</subject><subject>Hydroxyapatites</subject><subject>Materials research</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Organic chemistry</subject><subject>Phosphates</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Toxicity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10s1u1DAQB_AIgcRSOPAGlrhQqdk6zoftY1UVqFQBonC2HHuSuMrawXaW5sZD8AK8Gk-Ct8uhKy3ywZL1-89Yo8my1wVeFxiT8wnsmlSM8yfZqqgrlpOmrJ5mK4xLkpeMsefZixDucLJlzVfZ71szbsGjYdHe3S9yktFEQB6M7ZxXoNHkxuXt1thlRHJUbnDj6Z-fv0KUXg1I-cX1MCIrrVNuM7mQ0gFJq1GIs16Q61BrnIbeS51KO3uGds5DCGYLCXmwfRweEtJG00oVwRuZmqlotiYuL7NnnRwDvPp3n2Tf3l19vfyQ33x6f315cZOripY8b2hZE90wRnVbdQVv6rYodVNhTRktFCVKcVKptuxoTToKhHNoWiY1a0nRYV6eZG_2dSfvvs8Qorhzs7eppSAFrUvCeP1I9XIEsRtS9FJtTFDioqYUE8YKllR-RPVgwcvRWehMej7w6yM-HQ0bo44GTg8CyUS4j72cQxDXt18O7dkj287B2N30bTD9EMM-cqy08i4ED52YvNlIv4gCi92OibRj4mHHkj3f2x_pf8v_ofh89XGf-AsjQdXI</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Bagri, Laxmi Prasad</creator><creator>Saini, Rajesh K.</creator><creator>Kumar Bajpai, Anil</creator><creator>Choubey, Rashmi</creator><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201902</creationdate><title>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</title><author>Bagri, Laxmi Prasad ; Saini, Rajesh K. ; Kumar Bajpai, Anil ; Choubey, Rashmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4739-67352d6887db4f1965b13d640d7871c72cc924cb3f752f7e299e6b8ad8b21f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amylases</topic><topic>Antibacterial agents</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Chemical composition</topic><topic>Compressive strength</topic><topic>Electron microscopy</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Fourier transforms</topic><topic>Freeze thaw cycles</topic><topic>Gravimetric analysis</topic><topic>Hydroxyapatite</topic><topic>Hydroxyapatites</topic><topic>Materials research</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Organic chemistry</topic><topic>Phosphates</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagri, Laxmi Prasad</creatorcontrib><creatorcontrib>Saini, Rajesh K.</creatorcontrib><creatorcontrib>Kumar Bajpai, Anil</creatorcontrib><creatorcontrib>Choubey, Rashmi</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagri, Laxmi Prasad</au><au>Saini, Rajesh K.</au><au>Kumar Bajpai, Anil</au><au>Choubey, Rashmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity</atitle><jtitle>Polymer engineering and science</jtitle><date>2019-02</date><risdate>2019</risdate><volume>59</volume><issue>2</issue><spage>254</spage><epage>263</epage><pages>254-263</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Society of Plastics Engineers, Inc</pub><doi>10.1002/pen.24899</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2019-02, Vol.59 (2), p.254-263 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2175328959 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Amylases Antibacterial agents Bacteria Biodegradation Chemical composition Compressive strength Electron microscopy Enzyme activity Enzymes Fourier transforms Freeze thaw cycles Gravimetric analysis Hydroxyapatite Hydroxyapatites Materials research Microscopy Nanocomposites Organic chemistry Phosphates Polymers Polyvinyl alcohol Scanning electron microscopy Spectroscopy Toxicity |
title | Silver hydroxyapatite reinforced poly(vinyl alcohol)—starch cryogel nanocomposites and study of biodegradation, compressive strength and antibacterial activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20hydroxyapatite%20reinforced%20poly(vinyl%20alcohol)%E2%80%94starch%20cryogel%20nanocomposites%20and%20study%20of%20biodegradation,%20compressive%20strength%20and%20antibacterial%20activity&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Bagri,%20Laxmi%20Prasad&rft.date=2019-02&rft.volume=59&rft.issue=2&rft.spage=254&rft.epage=263&rft.pages=254-263&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.24899&rft_dat=%3Cgale_proqu%3EA577028818%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175328959&rft_id=info:pmid/&rft_galeid=A577028818&rfr_iscdi=true |