Costs of biomass pyrolysis as a negative emission technology: A case study

Summary Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2019-03, Vol.43 (3), p.1232-1244
1. Verfasser: Snyder, Brian F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 3
container_start_page 1232
container_title International journal of energy research
container_volume 43
creator Snyder, Brian F.
description Summary Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction. A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.
doi_str_mv 10.1002/er.4361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175257270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175257270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV_AsLHjxI6n5ksxtvpdQvCoIo9LZskkndkmbrTqrk35tar8LAHObhHXgJueRswhkTtxAnqcz4ERlxlucJ5-nymIyYzGSSM708JWeIa8aGG9cj8jwL2CENNS182DhEuu1jaHr0SN0wtIWV6_wXUNh4RB9a2kH50YYmrPo7OqWlQ6DY7ar-nJzUrkG4-Ntj8n4_f5s9JouXh6fZdJGUUuU8Ua50SigjMihMWhoteJWmDlhlUlBGcQWV0MZJJUxRy1oXudQ8q6UrWKUKLsfk6pC7jeFzB9jZddjFdnhpBddDtBaaDer6oMoYECPUdhv9xsXecmb3RVmIdl_UIG8O8ts30P_H7Pz1V_8AC2Bnsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175257270</pqid></control><display><type>article</type><title>Costs of biomass pyrolysis as a negative emission technology: A case study</title><source>Wiley-Blackwell Journals</source><creator>Snyder, Brian F.</creator><creatorcontrib>Snyder, Brian F.</creatorcontrib><description>Summary Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction. A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4361</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Atmospheric models ; biochar ; Biomass ; Carbon ; Carbon capture and storage ; Carbon dioxide ; Carbon sequestration ; Carbon sinks ; Case studies ; Charcoal ; Costa Rica ; Costs ; Electricity pricing ; Emission analysis ; Gasification ; NPV ; Prices ; Pyrolysis ; Renewable fuels ; social cost of carbon</subject><ispartof>International journal of energy research, 2019-03, Vol.43 (3), p.1232-1244</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</citedby><cites>FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</cites><orcidid>0000-0002-9611-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Snyder, Brian F.</creatorcontrib><title>Costs of biomass pyrolysis as a negative emission technology: A case study</title><title>International journal of energy research</title><description>Summary Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction. A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.</description><subject>Atmospheric models</subject><subject>biochar</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Case studies</subject><subject>Charcoal</subject><subject>Costa Rica</subject><subject>Costs</subject><subject>Electricity pricing</subject><subject>Emission analysis</subject><subject>Gasification</subject><subject>NPV</subject><subject>Prices</subject><subject>Pyrolysis</subject><subject>Renewable fuels</subject><subject>social cost of carbon</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV_AsLHjxI6n5ksxtvpdQvCoIo9LZskkndkmbrTqrk35tar8LAHObhHXgJueRswhkTtxAnqcz4ERlxlucJ5-nymIyYzGSSM708JWeIa8aGG9cj8jwL2CENNS182DhEuu1jaHr0SN0wtIWV6_wXUNh4RB9a2kH50YYmrPo7OqWlQ6DY7ar-nJzUrkG4-Ntj8n4_f5s9JouXh6fZdJGUUuU8Ua50SigjMihMWhoteJWmDlhlUlBGcQWV0MZJJUxRy1oXudQ8q6UrWKUKLsfk6pC7jeFzB9jZddjFdnhpBddDtBaaDer6oMoYECPUdhv9xsXecmb3RVmIdl_UIG8O8ts30P_H7Pz1V_8AC2Bnsw</recordid><startdate>20190310</startdate><enddate>20190310</enddate><creator>Snyder, Brian F.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9611-6061</orcidid></search><sort><creationdate>20190310</creationdate><title>Costs of biomass pyrolysis as a negative emission technology: A case study</title><author>Snyder, Brian F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>biochar</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Case studies</topic><topic>Charcoal</topic><topic>Costa Rica</topic><topic>Costs</topic><topic>Electricity pricing</topic><topic>Emission analysis</topic><topic>Gasification</topic><topic>NPV</topic><topic>Prices</topic><topic>Pyrolysis</topic><topic>Renewable fuels</topic><topic>social cost of carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, Brian F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, Brian F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Costs of biomass pyrolysis as a negative emission technology: A case study</atitle><jtitle>International journal of energy research</jtitle><date>2019-03-10</date><risdate>2019</risdate><volume>43</volume><issue>3</issue><spage>1232</spage><epage>1244</epage><pages>1232-1244</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction. A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4361</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9611-6061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2019-03, Vol.43 (3), p.1232-1244
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2175257270
source Wiley-Blackwell Journals
subjects Atmospheric models
biochar
Biomass
Carbon
Carbon capture and storage
Carbon dioxide
Carbon sequestration
Carbon sinks
Case studies
Charcoal
Costa Rica
Costs
Electricity pricing
Emission analysis
Gasification
NPV
Prices
Pyrolysis
Renewable fuels
social cost of carbon
title Costs of biomass pyrolysis as a negative emission technology: A case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Costs%20of%20biomass%20pyrolysis%20as%20a%20negative%20emission%20technology:%20A%20case%20study&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Snyder,%20Brian%20F.&rft.date=2019-03-10&rft.volume=43&rft.issue=3&rft.spage=1232&rft.epage=1244&rft.pages=1232-1244&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4361&rft_dat=%3Cproquest_cross%3E2175257270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175257270&rft_id=info:pmid/&rfr_iscdi=true