Costs of biomass pyrolysis as a negative emission technology: A case study
Summary Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of thr...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2019-03, Vol.43 (3), p.1232-1244 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1244 |
---|---|
container_issue | 3 |
container_start_page | 1232 |
container_title | International journal of energy research |
container_volume | 43 |
creator | Snyder, Brian F. |
description | Summary
Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction.
A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective. |
doi_str_mv | 10.1002/er.4361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175257270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175257270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV_AsLHjxI6n5ksxtvpdQvCoIo9LZskkndkmbrTqrk35tar8LAHObhHXgJueRswhkTtxAnqcz4ERlxlucJ5-nymIyYzGSSM708JWeIa8aGG9cj8jwL2CENNS182DhEuu1jaHr0SN0wtIWV6_wXUNh4RB9a2kH50YYmrPo7OqWlQ6DY7ar-nJzUrkG4-Ntj8n4_f5s9JouXh6fZdJGUUuU8Ua50SigjMihMWhoteJWmDlhlUlBGcQWV0MZJJUxRy1oXudQ8q6UrWKUKLsfk6pC7jeFzB9jZddjFdnhpBddDtBaaDer6oMoYECPUdhv9xsXecmb3RVmIdl_UIG8O8ts30P_H7Pz1V_8AC2Bnsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175257270</pqid></control><display><type>article</type><title>Costs of biomass pyrolysis as a negative emission technology: A case study</title><source>Wiley-Blackwell Journals</source><creator>Snyder, Brian F.</creator><creatorcontrib>Snyder, Brian F.</creatorcontrib><description>Summary
Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction.
A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4361</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Atmospheric models ; biochar ; Biomass ; Carbon ; Carbon capture and storage ; Carbon dioxide ; Carbon sequestration ; Carbon sinks ; Case studies ; Charcoal ; Costa Rica ; Costs ; Electricity pricing ; Emission analysis ; Gasification ; NPV ; Prices ; Pyrolysis ; Renewable fuels ; social cost of carbon</subject><ispartof>International journal of energy research, 2019-03, Vol.43 (3), p.1232-1244</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</citedby><cites>FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</cites><orcidid>0000-0002-9611-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Snyder, Brian F.</creatorcontrib><title>Costs of biomass pyrolysis as a negative emission technology: A case study</title><title>International journal of energy research</title><description>Summary
Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction.
A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.</description><subject>Atmospheric models</subject><subject>biochar</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Case studies</subject><subject>Charcoal</subject><subject>Costa Rica</subject><subject>Costs</subject><subject>Electricity pricing</subject><subject>Emission analysis</subject><subject>Gasification</subject><subject>NPV</subject><subject>Prices</subject><subject>Pyrolysis</subject><subject>Renewable fuels</subject><subject>social cost of carbon</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV_AsLHjxI6n5ksxtvpdQvCoIo9LZskkndkmbrTqrk35tar8LAHObhHXgJueRswhkTtxAnqcz4ERlxlucJ5-nymIyYzGSSM708JWeIa8aGG9cj8jwL2CENNS182DhEuu1jaHr0SN0wtIWV6_wXUNh4RB9a2kH50YYmrPo7OqWlQ6DY7ar-nJzUrkG4-Ntj8n4_f5s9JouXh6fZdJGUUuU8Ua50SigjMihMWhoteJWmDlhlUlBGcQWV0MZJJUxRy1oXudQ8q6UrWKUKLsfk6pC7jeFzB9jZddjFdnhpBddDtBaaDer6oMoYECPUdhv9xsXecmb3RVmIdl_UIG8O8ts30P_H7Pz1V_8AC2Bnsw</recordid><startdate>20190310</startdate><enddate>20190310</enddate><creator>Snyder, Brian F.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9611-6061</orcidid></search><sort><creationdate>20190310</creationdate><title>Costs of biomass pyrolysis as a negative emission technology: A case study</title><author>Snyder, Brian F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-5aca525826eb84c8721d44ae0d84e58515ed278a3528bf3f7b93716f3ab0d5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>biochar</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Case studies</topic><topic>Charcoal</topic><topic>Costa Rica</topic><topic>Costs</topic><topic>Electricity pricing</topic><topic>Emission analysis</topic><topic>Gasification</topic><topic>NPV</topic><topic>Prices</topic><topic>Pyrolysis</topic><topic>Renewable fuels</topic><topic>social cost of carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, Brian F.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, Brian F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Costs of biomass pyrolysis as a negative emission technology: A case study</atitle><jtitle>International journal of energy research</jtitle><date>2019-03-10</date><risdate>2019</risdate><volume>43</volume><issue>3</issue><spage>1232</spage><epage>1244</epage><pages>1232-1244</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
Biomass pyrolysis is a promising method for the creation of biochar, a potentially long‐lived carbon sink, and renewable fuels. While a number of studies of the costs of pyrolysis exist, many fail to value the carbon storage benefit associated with biochar. Here, we evaluate the costs of three types of small‐scale pyrolysis systems (slow and fast, compared with gasification) in Costa Rica. We find that under many combinations of model parameters, fast and slow pyrolysis models are cost‐effective. Net present values are positive for slow pyrolysis at carbon prices above $7 t−1, indicating that a low carbon price is required to make slow pyrolysis cost‐effective. Likewise, fast pyrolysis is cost‐effective at any positive carbon price. Gasification is generally more costly than fast or slow pyrolysis, and the net present value of the gasification system is only positive at electricity prices over $0.15 kWh−1 or carbon prices over $150 t−1. Thus, both fast and slow pyrolysis models are promising methods for atmospheric CO2 reduction.
A net present value model of biomass pyrolysis is parameterized for a tropical developing world system. Without a cost of carbon, fast and slow pyrolysis systems have slightly positive and slightly negative net cash flows, respectively, but cash flows become strongly positive at carbon prices of 30 or 60 $/t. Gasification systems are never cost effective.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4361</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9611-6061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2019-03, Vol.43 (3), p.1232-1244 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2175257270 |
source | Wiley-Blackwell Journals |
subjects | Atmospheric models biochar Biomass Carbon Carbon capture and storage Carbon dioxide Carbon sequestration Carbon sinks Case studies Charcoal Costa Rica Costs Electricity pricing Emission analysis Gasification NPV Prices Pyrolysis Renewable fuels social cost of carbon |
title | Costs of biomass pyrolysis as a negative emission technology: A case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Costs%20of%20biomass%20pyrolysis%20as%20a%20negative%20emission%20technology:%20A%20case%20study&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Snyder,%20Brian%20F.&rft.date=2019-03-10&rft.volume=43&rft.issue=3&rft.spage=1232&rft.epage=1244&rft.pages=1232-1244&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4361&rft_dat=%3Cproquest_cross%3E2175257270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175257270&rft_id=info:pmid/&rfr_iscdi=true |