Fourier Descriptors Based Expert Decision Classification of Plug Seedlings
To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlin...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2019 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2019 |
creator | Wu, Chuanyu Wang, Yan-feng Wang, Rongyang He, Yanhu |
description | To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting. |
doi_str_mv | 10.1155/2019/5078735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175238663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175238663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f80560231536c9ba4f80e042693f42379f9fad2c208031777d1e32abbf4134673</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXn40zVHn5g8GCip4C1mazIza1qRD_e_NqODRU16ST94jX4SOAV8AcD4hGOSEY1EKynfQCHhBcw5M7KYaE5YDoa_76CDGNcYEOJQjdD9vN8HbkF3baILv-jbE7EpHW2Wzr86GPl0YH33bZNNax-idN7rfbluXPdabVfZkbVX7ZhUP0Z7TdbRHv-sYvcxnz9PbfPFwcze9XOSGguhzV2JeYEKB08LIpWbpwGJGCkkdI1RIJ52uiCG4xOmBEBVYSvRy6RhQVgg6RqdD3y60Hxsbe7VOf2jSSEVAcELLoqBJnQ_KhDbGYJ3qgn_X4VsBVtu01DYt9ZtW4mcDf_NNpT_9f_pk0DYZ6_SfBsllAj8kYnGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175238663</pqid></control><display><type>article</type><title>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wu, Chuanyu ; Wang, Yan-feng ; Wang, Rongyang ; He, Yanhu</creator><contributor>Reinoso, Oscar ; Oscar Reinoso</contributor><creatorcontrib>Wu, Chuanyu ; Wang, Yan-feng ; Wang, Rongyang ; He, Yanhu ; Reinoso, Oscar ; Oscar Reinoso</creatorcontrib><description>To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/5078735</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Agriculture ; Algorithms ; Back propagation networks ; Cameras ; Classification ; Cluster analysis ; Clustering ; Crop diseases ; Expert systems ; Farm machinery ; Fault diagnosis ; Fourier transforms ; Gray scale ; Identification ; Image acquisition ; Image segmentation ; Methods ; Morphology ; Neural networks ; Support vector machines ; Transplantation ; Vector quantization</subject><ispartof>Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-10</ispartof><rights>Copyright © 2019 Yanhu He et al.</rights><rights>Copyright © 2019 Yanhu He et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-f80560231536c9ba4f80e042693f42379f9fad2c208031777d1e32abbf4134673</cites><orcidid>0000-0002-9500-4340 ; 0000-0001-6806-0876 ; 0000-0003-4951-6502 ; 0000-0001-7873-6577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Reinoso, Oscar</contributor><contributor>Oscar Reinoso</contributor><creatorcontrib>Wu, Chuanyu</creatorcontrib><creatorcontrib>Wang, Yan-feng</creatorcontrib><creatorcontrib>Wang, Rongyang</creatorcontrib><creatorcontrib>He, Yanhu</creatorcontrib><title>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</title><title>Mathematical problems in engineering</title><description>To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.</description><subject>Accuracy</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Cameras</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Crop diseases</subject><subject>Expert systems</subject><subject>Farm machinery</subject><subject>Fault diagnosis</subject><subject>Fourier transforms</subject><subject>Gray scale</subject><subject>Identification</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Transplantation</subject><subject>Vector quantization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXn40zVHn5g8GCip4C1mazIza1qRD_e_NqODRU16ST94jX4SOAV8AcD4hGOSEY1EKynfQCHhBcw5M7KYaE5YDoa_76CDGNcYEOJQjdD9vN8HbkF3baILv-jbE7EpHW2Wzr86GPl0YH33bZNNax-idN7rfbluXPdabVfZkbVX7ZhUP0Z7TdbRHv-sYvcxnz9PbfPFwcze9XOSGguhzV2JeYEKB08LIpWbpwGJGCkkdI1RIJ52uiCG4xOmBEBVYSvRy6RhQVgg6RqdD3y60Hxsbe7VOf2jSSEVAcELLoqBJnQ_KhDbGYJ3qgn_X4VsBVtu01DYt9ZtW4mcDf_NNpT_9f_pk0DYZ6_SfBsllAj8kYnGo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Chuanyu</creator><creator>Wang, Yan-feng</creator><creator>Wang, Rongyang</creator><creator>He, Yanhu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9500-4340</orcidid><orcidid>https://orcid.org/0000-0001-6806-0876</orcidid><orcidid>https://orcid.org/0000-0003-4951-6502</orcidid><orcidid>https://orcid.org/0000-0001-7873-6577</orcidid></search><sort><creationdate>2019</creationdate><title>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</title><author>Wu, Chuanyu ; Wang, Yan-feng ; Wang, Rongyang ; He, Yanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f80560231536c9ba4f80e042693f42379f9fad2c208031777d1e32abbf4134673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Cameras</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Crop diseases</topic><topic>Expert systems</topic><topic>Farm machinery</topic><topic>Fault diagnosis</topic><topic>Fourier transforms</topic><topic>Gray scale</topic><topic>Identification</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Transplantation</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chuanyu</creatorcontrib><creatorcontrib>Wang, Yan-feng</creatorcontrib><creatorcontrib>Wang, Rongyang</creatorcontrib><creatorcontrib>He, Yanhu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chuanyu</au><au>Wang, Yan-feng</au><au>Wang, Rongyang</au><au>He, Yanhu</au><au>Reinoso, Oscar</au><au>Oscar Reinoso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5078735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9500-4340</orcidid><orcidid>https://orcid.org/0000-0001-6806-0876</orcidid><orcidid>https://orcid.org/0000-0003-4951-6502</orcidid><orcidid>https://orcid.org/0000-0001-7873-6577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-10 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2175238663 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Accuracy Agriculture Algorithms Back propagation networks Cameras Classification Cluster analysis Clustering Crop diseases Expert systems Farm machinery Fault diagnosis Fourier transforms Gray scale Identification Image acquisition Image segmentation Methods Morphology Neural networks Support vector machines Transplantation Vector quantization |
title | Fourier Descriptors Based Expert Decision Classification of Plug Seedlings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Descriptors%20Based%20Expert%20Decision%20Classification%20of%20Plug%20Seedlings&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wu,%20Chuanyu&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/5078735&rft_dat=%3Cproquest_cross%3E2175238663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175238663&rft_id=info:pmid/&rfr_iscdi=true |