Fourier Descriptors Based Expert Decision Classification of Plug Seedlings

To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-10
Hauptverfasser: Wu, Chuanyu, Wang, Yan-feng, Wang, Rongyang, He, Yanhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Wu, Chuanyu
Wang, Yan-feng
Wang, Rongyang
He, Yanhu
description To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.
doi_str_mv 10.1155/2019/5078735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175238663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175238663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f80560231536c9ba4f80e042693f42379f9fad2c208031777d1e32abbf4134673</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXn40zVHn5g8GCip4C1mazIza1qRD_e_NqODRU16ST94jX4SOAV8AcD4hGOSEY1EKynfQCHhBcw5M7KYaE5YDoa_76CDGNcYEOJQjdD9vN8HbkF3baILv-jbE7EpHW2Wzr86GPl0YH33bZNNax-idN7rfbluXPdabVfZkbVX7ZhUP0Z7TdbRHv-sYvcxnz9PbfPFwcze9XOSGguhzV2JeYEKB08LIpWbpwGJGCkkdI1RIJ52uiCG4xOmBEBVYSvRy6RhQVgg6RqdD3y60Hxsbe7VOf2jSSEVAcELLoqBJnQ_KhDbGYJ3qgn_X4VsBVtu01DYt9ZtW4mcDf_NNpT_9f_pk0DYZ6_SfBsllAj8kYnGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175238663</pqid></control><display><type>article</type><title>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Wu, Chuanyu ; Wang, Yan-feng ; Wang, Rongyang ; He, Yanhu</creator><contributor>Reinoso, Oscar ; Oscar Reinoso</contributor><creatorcontrib>Wu, Chuanyu ; Wang, Yan-feng ; Wang, Rongyang ; He, Yanhu ; Reinoso, Oscar ; Oscar Reinoso</creatorcontrib><description>To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/5078735</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Agriculture ; Algorithms ; Back propagation networks ; Cameras ; Classification ; Cluster analysis ; Clustering ; Crop diseases ; Expert systems ; Farm machinery ; Fault diagnosis ; Fourier transforms ; Gray scale ; Identification ; Image acquisition ; Image segmentation ; Methods ; Morphology ; Neural networks ; Support vector machines ; Transplantation ; Vector quantization</subject><ispartof>Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-10</ispartof><rights>Copyright © 2019 Yanhu He et al.</rights><rights>Copyright © 2019 Yanhu He et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-f80560231536c9ba4f80e042693f42379f9fad2c208031777d1e32abbf4134673</cites><orcidid>0000-0002-9500-4340 ; 0000-0001-6806-0876 ; 0000-0003-4951-6502 ; 0000-0001-7873-6577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Reinoso, Oscar</contributor><contributor>Oscar Reinoso</contributor><creatorcontrib>Wu, Chuanyu</creatorcontrib><creatorcontrib>Wang, Yan-feng</creatorcontrib><creatorcontrib>Wang, Rongyang</creatorcontrib><creatorcontrib>He, Yanhu</creatorcontrib><title>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</title><title>Mathematical problems in engineering</title><description>To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.</description><subject>Accuracy</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Cameras</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Crop diseases</subject><subject>Expert systems</subject><subject>Farm machinery</subject><subject>Fault diagnosis</subject><subject>Fourier transforms</subject><subject>Gray scale</subject><subject>Identification</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Transplantation</subject><subject>Vector quantization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGpdXn40zVHn5g8GCip4C1mazIza1qRD_e_NqODRU16ST94jX4SOAV8AcD4hGOSEY1EKynfQCHhBcw5M7KYaE5YDoa_76CDGNcYEOJQjdD9vN8HbkF3baILv-jbE7EpHW2Wzr86GPl0YH33bZNNax-idN7rfbluXPdabVfZkbVX7ZhUP0Z7TdbRHv-sYvcxnz9PbfPFwcze9XOSGguhzV2JeYEKB08LIpWbpwGJGCkkdI1RIJ52uiCG4xOmBEBVYSvRy6RhQVgg6RqdD3y60Hxsbe7VOf2jSSEVAcELLoqBJnQ_KhDbGYJ3qgn_X4VsBVtu01DYt9ZtW4mcDf_NNpT_9f_pk0DYZ6_SfBsllAj8kYnGo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Chuanyu</creator><creator>Wang, Yan-feng</creator><creator>Wang, Rongyang</creator><creator>He, Yanhu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9500-4340</orcidid><orcidid>https://orcid.org/0000-0001-6806-0876</orcidid><orcidid>https://orcid.org/0000-0003-4951-6502</orcidid><orcidid>https://orcid.org/0000-0001-7873-6577</orcidid></search><sort><creationdate>2019</creationdate><title>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</title><author>Wu, Chuanyu ; Wang, Yan-feng ; Wang, Rongyang ; He, Yanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f80560231536c9ba4f80e042693f42379f9fad2c208031777d1e32abbf4134673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Cameras</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Crop diseases</topic><topic>Expert systems</topic><topic>Farm machinery</topic><topic>Fault diagnosis</topic><topic>Fourier transforms</topic><topic>Gray scale</topic><topic>Identification</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Transplantation</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chuanyu</creatorcontrib><creatorcontrib>Wang, Yan-feng</creatorcontrib><creatorcontrib>Wang, Rongyang</creatorcontrib><creatorcontrib>He, Yanhu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chuanyu</au><au>Wang, Yan-feng</au><au>Wang, Rongyang</au><au>He, Yanhu</au><au>Reinoso, Oscar</au><au>Oscar Reinoso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Descriptors Based Expert Decision Classification of Plug Seedlings</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>To enable automatic transplantation of plug seedlings and improve identification accuracy, an algorithm to identify ideal seedling leaf sets based on Fourier descriptors is developed, and a classification method based on expert system is adopted to improve the identification rate of the plug seedlings. First, the image of the plug seedlings is captured by image acquisition system, followed by application of K-means clustering for image segmentation and binary processing and identification of the ideal seedling leaf set by Fourier descriptors. Then we obtain feature vectors, such as gray scale (R+B+G)/3, hue H, and rectangularity. After that the knowledge model of the plug seedlings is defined, and the inference engine based on knowledge is designed. Finally, the recognizing test is carried out. The success rate of the identification of 10 varieties of plug seedlings from 190 plates is 98.5%. For the same sample, the recognizing rate of support vector machine (SVM) is 85%, the recognizing rate of particle-swarm optimization SVM (PSOSVM) is 87%, the recognizing rate of back propagation neural network (BP) is 63%, and the recognizing rate of Fourier descriptors SVM (FDSVM) is 87%. These results show that our recognition method based on an expert system satisfies the requirements of automatic transplanting.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5078735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9500-4340</orcidid><orcidid>https://orcid.org/0000-0001-6806-0876</orcidid><orcidid>https://orcid.org/0000-0003-4951-6502</orcidid><orcidid>https://orcid.org/0000-0001-7873-6577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2175238663
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Accuracy
Agriculture
Algorithms
Back propagation networks
Cameras
Classification
Cluster analysis
Clustering
Crop diseases
Expert systems
Farm machinery
Fault diagnosis
Fourier transforms
Gray scale
Identification
Image acquisition
Image segmentation
Methods
Morphology
Neural networks
Support vector machines
Transplantation
Vector quantization
title Fourier Descriptors Based Expert Decision Classification of Plug Seedlings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Descriptors%20Based%20Expert%20Decision%20Classification%20of%20Plug%20Seedlings&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wu,%20Chuanyu&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/5078735&rft_dat=%3Cproquest_cross%3E2175238663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175238663&rft_id=info:pmid/&rfr_iscdi=true