Modified grape stem as a renewable adsorbent for cadmium removal

In order to aggregate value to the grape stem (wastes), this research aim was to increase the adsorption capacity of Cd by chemical modifications on grape stems. The grape stems were milled and sieved, resulting in the biosorbent, which was used for the chemical modifications resulting in E. H O , E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2018-12, Vol.78 (11), p.2308-2320
Hauptverfasser: Schwantes, Daniel, Gonçalves, Jr, Affonso Celso, De Varennes, Amarilis, Braccini, Alessandro Lucca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2320
container_issue 11
container_start_page 2308
container_title Water science and technology
container_volume 78
creator Schwantes, Daniel
Gonçalves, Jr, Affonso Celso
De Varennes, Amarilis
Braccini, Alessandro Lucca
description In order to aggregate value to the grape stem (wastes), this research aim was to increase the adsorption capacity of Cd by chemical modifications on grape stems. The grape stems were milled and sieved, resulting in the biosorbent, which was used for the chemical modifications resulting in E. H O , E. H SO and E. NaOH. These were characterized by such means as its pH , Fourier transform-infrared (FTIR) spectroscopy, porosimetry, thermal stability and scanning electron microscopy. The ideal adsorption dose, the pH influence on adsorption, kinetics, equilibrium and thermodynamics studies were carried out. The FTIR spectroscopy suggests the occurrence of carboxyl, amine, and phenolic acting in Cd sorption. The modification on grape biomass caused small increase in pore volume and specific surface area. The grape-based adsorbents have similar thermal stability, with irregular appearance and heterogeneity. 5.0 g kg is the best adsorption dose. The modified adsorbents exhibited increase in Cd removal of 66% for E. NaOH, 33% for E. H O and 8.3% for E. H SO . The use of grape stem as adsorbent is an attractive alternative, because its wastes have great availability, low cost and great potential for metal adsorption processes.
doi_str_mv 10.2166/wst.2018.511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175188826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175188826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a8fc5b5ffdbb583d3c8f7d4d6bde8dd4e81ba84d5d8feeff9a336032477163ba3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMotlZ3riXg1hnzmDxmpxRfUHGj65BMvsiUTlOTGYv_3imtru7iHu6Fg9AlJSWjUt5uc18yQnUpKD1CU1rXsqgVZ8doSpjiBWWMT9BZzktCiOIVOUUTTmRdE82m6O41-ja04PFnshvAuYcO24wtTrCGrXUrwNbnmBysexxiwo31XTt0Y9_Fb7s6RyfBrjJcHHKGPh4f3ufPxeLt6WV-vygaLlRfWB0a4UQI3jmhueeNDspXXjoP2vsKNHVWV154HQBCqC3nknBWKUUld5bP0PV-d5Pi1wC5N8s4pPV4aRhVgmqtmRypmz3VpJhzgmA2qe1s-jGUmJ0uM-oyO11m1DXiV4fRwXXg_-E_P_wXNPFmbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175188826</pqid></control><display><type>article</type><title>Modified grape stem as a renewable adsorbent for cadmium removal</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Schwantes, Daniel ; Gonçalves, Jr, Affonso Celso ; De Varennes, Amarilis ; Braccini, Alessandro Lucca</creator><creatorcontrib>Schwantes, Daniel ; Gonçalves, Jr, Affonso Celso ; De Varennes, Amarilis ; Braccini, Alessandro Lucca</creatorcontrib><description>In order to aggregate value to the grape stem (wastes), this research aim was to increase the adsorption capacity of Cd by chemical modifications on grape stems. The grape stems were milled and sieved, resulting in the biosorbent, which was used for the chemical modifications resulting in E. H O , E. H SO and E. NaOH. These were characterized by such means as its pH , Fourier transform-infrared (FTIR) spectroscopy, porosimetry, thermal stability and scanning electron microscopy. The ideal adsorption dose, the pH influence on adsorption, kinetics, equilibrium and thermodynamics studies were carried out. The FTIR spectroscopy suggests the occurrence of carboxyl, amine, and phenolic acting in Cd sorption. The modification on grape biomass caused small increase in pore volume and specific surface area. The grape-based adsorbents have similar thermal stability, with irregular appearance and heterogeneity. 5.0 g kg is the best adsorption dose. The modified adsorbents exhibited increase in Cd removal of 66% for E. NaOH, 33% for E. H O and 8.3% for E. H SO . The use of grape stem as adsorbent is an attractive alternative, because its wastes have great availability, low cost and great potential for metal adsorption processes.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2018.511</identifier><identifier>PMID: 30699082</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Adsorbents ; Adsorption ; Amines ; Analytical methods ; Biomass ; Cadmium ; Cadmium - analysis ; Cadmium - chemistry ; Electron microscopy ; Environmental impact ; Fourier transforms ; Fruits ; Grapes ; Heavy metals ; Heterogeneity ; Hydrogen Peroxide ; Hydrogen-Ion Concentration ; Infrared spectroscopy ; Kinetics ; Membrane separation ; Metals ; Methods ; Microscopy, Electron, Scanning ; Organic chemistry ; Phenolic compounds ; Phenols ; Plant Stems - chemistry ; Poisoning ; Principal components analysis ; Removal ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Scientific imaging ; Seeds ; Sodium hydroxide ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Stems ; Sulfuric acid ; Sulphuric acid ; Thermal stability ; Thermodynamic equilibrium ; Thermodynamics ; Vitis - chemistry ; Wastes ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water Purification - methods ; Water treatment</subject><ispartof>Water science and technology, 2018-12, Vol.78 (11), p.2308-2320</ispartof><rights>Copyright IWA Publishing Dec 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a8fc5b5ffdbb583d3c8f7d4d6bde8dd4e81ba84d5d8feeff9a336032477163ba3</citedby><cites>FETCH-LOGICAL-c357t-a8fc5b5ffdbb583d3c8f7d4d6bde8dd4e81ba84d5d8feeff9a336032477163ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30699082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwantes, Daniel</creatorcontrib><creatorcontrib>Gonçalves, Jr, Affonso Celso</creatorcontrib><creatorcontrib>De Varennes, Amarilis</creatorcontrib><creatorcontrib>Braccini, Alessandro Lucca</creatorcontrib><title>Modified grape stem as a renewable adsorbent for cadmium removal</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>In order to aggregate value to the grape stem (wastes), this research aim was to increase the adsorption capacity of Cd by chemical modifications on grape stems. The grape stems were milled and sieved, resulting in the biosorbent, which was used for the chemical modifications resulting in E. H O , E. H SO and E. NaOH. These were characterized by such means as its pH , Fourier transform-infrared (FTIR) spectroscopy, porosimetry, thermal stability and scanning electron microscopy. The ideal adsorption dose, the pH influence on adsorption, kinetics, equilibrium and thermodynamics studies were carried out. The FTIR spectroscopy suggests the occurrence of carboxyl, amine, and phenolic acting in Cd sorption. The modification on grape biomass caused small increase in pore volume and specific surface area. The grape-based adsorbents have similar thermal stability, with irregular appearance and heterogeneity. 5.0 g kg is the best adsorption dose. The modified adsorbents exhibited increase in Cd removal of 66% for E. NaOH, 33% for E. H O and 8.3% for E. H SO . The use of grape stem as adsorbent is an attractive alternative, because its wastes have great availability, low cost and great potential for metal adsorption processes.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Amines</subject><subject>Analytical methods</subject><subject>Biomass</subject><subject>Cadmium</subject><subject>Cadmium - analysis</subject><subject>Cadmium - chemistry</subject><subject>Electron microscopy</subject><subject>Environmental impact</subject><subject>Fourier transforms</subject><subject>Fruits</subject><subject>Grapes</subject><subject>Heavy metals</subject><subject>Heterogeneity</subject><subject>Hydrogen Peroxide</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infrared spectroscopy</subject><subject>Kinetics</subject><subject>Membrane separation</subject><subject>Metals</subject><subject>Methods</subject><subject>Microscopy, Electron, Scanning</subject><subject>Organic chemistry</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant Stems - chemistry</subject><subject>Poisoning</subject><subject>Principal components analysis</subject><subject>Removal</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Scientific imaging</subject><subject>Seeds</subject><subject>Sodium hydroxide</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Stems</subject><subject>Sulfuric acid</subject><subject>Sulphuric acid</subject><subject>Thermal stability</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Vitis - chemistry</subject><subject>Wastes</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - methods</subject><subject>Water treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtLAzEYRYMotlZ3riXg1hnzmDxmpxRfUHGj65BMvsiUTlOTGYv_3imtru7iHu6Fg9AlJSWjUt5uc18yQnUpKD1CU1rXsqgVZ8doSpjiBWWMT9BZzktCiOIVOUUTTmRdE82m6O41-ja04PFnshvAuYcO24wtTrCGrXUrwNbnmBysexxiwo31XTt0Y9_Fb7s6RyfBrjJcHHKGPh4f3ufPxeLt6WV-vygaLlRfWB0a4UQI3jmhueeNDspXXjoP2vsKNHVWV154HQBCqC3nknBWKUUld5bP0PV-d5Pi1wC5N8s4pPV4aRhVgmqtmRypmz3VpJhzgmA2qe1s-jGUmJ0uM-oyO11m1DXiV4fRwXXg_-E_P_wXNPFmbQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Schwantes, Daniel</creator><creator>Gonçalves, Jr, Affonso Celso</creator><creator>De Varennes, Amarilis</creator><creator>Braccini, Alessandro Lucca</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20181201</creationdate><title>Modified grape stem as a renewable adsorbent for cadmium removal</title><author>Schwantes, Daniel ; Gonçalves, Jr, Affonso Celso ; De Varennes, Amarilis ; Braccini, Alessandro Lucca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a8fc5b5ffdbb583d3c8f7d4d6bde8dd4e81ba84d5d8feeff9a336032477163ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Amines</topic><topic>Analytical methods</topic><topic>Biomass</topic><topic>Cadmium</topic><topic>Cadmium - analysis</topic><topic>Cadmium - chemistry</topic><topic>Electron microscopy</topic><topic>Environmental impact</topic><topic>Fourier transforms</topic><topic>Fruits</topic><topic>Grapes</topic><topic>Heavy metals</topic><topic>Heterogeneity</topic><topic>Hydrogen Peroxide</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infrared spectroscopy</topic><topic>Kinetics</topic><topic>Membrane separation</topic><topic>Metals</topic><topic>Methods</topic><topic>Microscopy, Electron, Scanning</topic><topic>Organic chemistry</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant Stems - chemistry</topic><topic>Poisoning</topic><topic>Principal components analysis</topic><topic>Removal</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Scientific imaging</topic><topic>Seeds</topic><topic>Sodium hydroxide</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Stems</topic><topic>Sulfuric acid</topic><topic>Sulphuric acid</topic><topic>Thermal stability</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Vitis - chemistry</topic><topic>Wastes</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - methods</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwantes, Daniel</creatorcontrib><creatorcontrib>Gonçalves, Jr, Affonso Celso</creatorcontrib><creatorcontrib>De Varennes, Amarilis</creatorcontrib><creatorcontrib>Braccini, Alessandro Lucca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwantes, Daniel</au><au>Gonçalves, Jr, Affonso Celso</au><au>De Varennes, Amarilis</au><au>Braccini, Alessandro Lucca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified grape stem as a renewable adsorbent for cadmium removal</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>78</volume><issue>11</issue><spage>2308</spage><epage>2320</epage><pages>2308-2320</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>In order to aggregate value to the grape stem (wastes), this research aim was to increase the adsorption capacity of Cd by chemical modifications on grape stems. The grape stems were milled and sieved, resulting in the biosorbent, which was used for the chemical modifications resulting in E. H O , E. H SO and E. NaOH. These were characterized by such means as its pH , Fourier transform-infrared (FTIR) spectroscopy, porosimetry, thermal stability and scanning electron microscopy. The ideal adsorption dose, the pH influence on adsorption, kinetics, equilibrium and thermodynamics studies were carried out. The FTIR spectroscopy suggests the occurrence of carboxyl, amine, and phenolic acting in Cd sorption. The modification on grape biomass caused small increase in pore volume and specific surface area. The grape-based adsorbents have similar thermal stability, with irregular appearance and heterogeneity. 5.0 g kg is the best adsorption dose. The modified adsorbents exhibited increase in Cd removal of 66% for E. NaOH, 33% for E. H O and 8.3% for E. H SO . The use of grape stem as adsorbent is an attractive alternative, because its wastes have great availability, low cost and great potential for metal adsorption processes.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>30699082</pmid><doi>10.2166/wst.2018.511</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2018-12, Vol.78 (11), p.2308-2320
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_journals_2175188826
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Adsorbents
Adsorption
Amines
Analytical methods
Biomass
Cadmium
Cadmium - analysis
Cadmium - chemistry
Electron microscopy
Environmental impact
Fourier transforms
Fruits
Grapes
Heavy metals
Heterogeneity
Hydrogen Peroxide
Hydrogen-Ion Concentration
Infrared spectroscopy
Kinetics
Membrane separation
Metals
Methods
Microscopy, Electron, Scanning
Organic chemistry
Phenolic compounds
Phenols
Plant Stems - chemistry
Poisoning
Principal components analysis
Removal
Scanning electron microscopy
Scanning transmission electron microscopy
Scientific imaging
Seeds
Sodium hydroxide
Spectroscopy
Spectroscopy, Fourier Transform Infrared
Stems
Sulfuric acid
Sulphuric acid
Thermal stability
Thermodynamic equilibrium
Thermodynamics
Vitis - chemistry
Wastes
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
Water Purification - methods
Water treatment
title Modified grape stem as a renewable adsorbent for cadmium removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20grape%20stem%20as%20a%20renewable%20adsorbent%20for%20cadmium%20removal&rft.jtitle=Water%20science%20and%20technology&rft.au=Schwantes,%20Daniel&rft.date=2018-12-01&rft.volume=78&rft.issue=11&rft.spage=2308&rft.epage=2320&rft.pages=2308-2320&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2018.511&rft_dat=%3Cproquest_cross%3E2175188826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175188826&rft_id=info:pmid/30699082&rfr_iscdi=true