Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications
Zinc phosphate hydrate Zn 3 (PO 4 ) 2 ·4H 2 O thin films were deposited making use of chronoamperometric mode, on three types of substrates: fluorine-doped tin oxide (FTO) on glass, stainless steel, and titanium. The precursors were solutions in aqueous medium of Zn(NO 3 ) 2 ·6H 2 O and NH 4 H 2 PO...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2019-02, Vol.49 (2), p.163-177 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | Journal of applied electrochemistry |
container_volume | 49 |
creator | Chennah, A. Naciri, Y. Taoufyq, A. Bakiz, B. Bazzi, L. Guinneton, F. Villain, S. Gavarri, J. R. Benlhachemi, A. |
description | Zinc phosphate hydrate Zn
3
(PO
4
)
2
·4H
2
O thin films were deposited making use of chronoamperometric mode, on three types of substrates: fluorine-doped tin oxide (FTO) on glass, stainless steel, and titanium. The precursors were solutions in aqueous medium of Zn(NO
3
)
2
·6H
2
O and NH
4
H
2
PO
4
. The effects of various parameters (concentrations of starting precursors, nature of substrates) on the properties of electrodeposited films were analyzed. The films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical cyclic voltammetry. The material Zn
3
(PO
4
)
2
·4H
2
O, electrodeposited on the three different substrates to form three types of anodes, crystallized in the orthorhombic structure of hopeite β. The first determinations of the electrocatalytic degradation of rhodamine B (RhB) were performed using the three types of anodes. The RhB degradation was followed by UV–Visible spectrophotometry and also by chemical oxygen demand: it was found that the best degradation was obtained on FTO substrate.
Graphical abstract |
doi_str_mv | 10.1007/s10800-018-1261-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175055617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175055617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c0b524cb1a7114d26ba40ea702c7052aeda6730c6c1373fd5817d71e9e775afc3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwNuC59X3sps_PUqpVih4qeAtpEnWblk3Mdke6qc3ZS2ePA3z-M08GEJuEe4RQDwkBAlQAsoSKcdSnpEJMkFLKSt5TiYANB9n-H5JrlLaAcCM8npC1ovOmSF664JP7eBs8d32pghbn8JWD67YHmw8qjtxqWh8PFmjB90dhtYUOoSuzbb1fbomF43ukrv51Sl5e1qs58ty9fr8Mn9claZCPpQGNozWZoNaINaW8o2uwWkB1AhgVDuruajAcIOVqBrLJAor0M2cEEw3ppqSu7E3RP-1d2lQO7-PfX6pKAoGjHEUmcKRMtGnFF2jQmw_dTwoBHUcT43jqTyeOo6nZM7QMZMy23-4-Nf8f-gH7NFzfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175055617</pqid></control><display><type>article</type><title>Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chennah, A. ; Naciri, Y. ; Taoufyq, A. ; Bakiz, B. ; Bazzi, L. ; Guinneton, F. ; Villain, S. ; Gavarri, J. R. ; Benlhachemi, A.</creator><creatorcontrib>Chennah, A. ; Naciri, Y. ; Taoufyq, A. ; Bakiz, B. ; Bazzi, L. ; Guinneton, F. ; Villain, S. ; Gavarri, J. R. ; Benlhachemi, A.</creatorcontrib><description>Zinc phosphate hydrate Zn
3
(PO
4
)
2
·4H
2
O thin films were deposited making use of chronoamperometric mode, on three types of substrates: fluorine-doped tin oxide (FTO) on glass, stainless steel, and titanium. The precursors were solutions in aqueous medium of Zn(NO
3
)
2
·6H
2
O and NH
4
H
2
PO
4
. The effects of various parameters (concentrations of starting precursors, nature of substrates) on the properties of electrodeposited films were analyzed. The films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical cyclic voltammetry. The material Zn
3
(PO
4
)
2
·4H
2
O, electrodeposited on the three different substrates to form three types of anodes, crystallized in the orthorhombic structure of hopeite β. The first determinations of the electrocatalytic degradation of rhodamine B (RhB) were performed using the three types of anodes. The RhB degradation was followed by UV–Visible spectrophotometry and also by chemical oxygen demand: it was found that the best degradation was obtained on FTO substrate.
Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-018-1261-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Ammonium dihydrogen phosphate ; Anodes ; Aqueous solutions ; Chemical oxygen demand ; Chemistry ; Chemistry and Materials Science ; Crystallization ; Degradation ; Electrochemistry ; Electrodeposition ; Fluorine ; Industrial Chemistry/Chemical Engineering ; Organic chemistry ; Physical Chemistry ; Precursors ; Raman spectroscopy ; Research Article ; Rhodamine ; Scanning electron microscopy ; Spectrophotometry ; Stainless steels ; Substrates ; Thin films ; Tin oxides ; X-ray diffraction ; Zinc phosphate</subject><ispartof>Journal of applied electrochemistry, 2019-02, Vol.49 (2), p.163-177</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c0b524cb1a7114d26ba40ea702c7052aeda6730c6c1373fd5817d71e9e775afc3</citedby><cites>FETCH-LOGICAL-c316t-c0b524cb1a7114d26ba40ea702c7052aeda6730c6c1373fd5817d71e9e775afc3</cites><orcidid>0000-0002-9299-2603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-018-1261-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-018-1261-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chennah, A.</creatorcontrib><creatorcontrib>Naciri, Y.</creatorcontrib><creatorcontrib>Taoufyq, A.</creatorcontrib><creatorcontrib>Bakiz, B.</creatorcontrib><creatorcontrib>Bazzi, L.</creatorcontrib><creatorcontrib>Guinneton, F.</creatorcontrib><creatorcontrib>Villain, S.</creatorcontrib><creatorcontrib>Gavarri, J. R.</creatorcontrib><creatorcontrib>Benlhachemi, A.</creatorcontrib><title>Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>Zinc phosphate hydrate Zn
3
(PO
4
)
2
·4H
2
O thin films were deposited making use of chronoamperometric mode, on three types of substrates: fluorine-doped tin oxide (FTO) on glass, stainless steel, and titanium. The precursors were solutions in aqueous medium of Zn(NO
3
)
2
·6H
2
O and NH
4
H
2
PO
4
. The effects of various parameters (concentrations of starting precursors, nature of substrates) on the properties of electrodeposited films were analyzed. The films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical cyclic voltammetry. The material Zn
3
(PO
4
)
2
·4H
2
O, electrodeposited on the three different substrates to form three types of anodes, crystallized in the orthorhombic structure of hopeite β. The first determinations of the electrocatalytic degradation of rhodamine B (RhB) were performed using the three types of anodes. The RhB degradation was followed by UV–Visible spectrophotometry and also by chemical oxygen demand: it was found that the best degradation was obtained on FTO substrate.
Graphical abstract</description><subject>Ammonium dihydrogen phosphate</subject><subject>Anodes</subject><subject>Aqueous solutions</subject><subject>Chemical oxygen demand</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Degradation</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Fluorine</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Organic chemistry</subject><subject>Physical Chemistry</subject><subject>Precursors</subject><subject>Raman spectroscopy</subject><subject>Research Article</subject><subject>Rhodamine</subject><subject>Scanning electron microscopy</subject><subject>Spectrophotometry</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Tin oxides</subject><subject>X-ray diffraction</subject><subject>Zinc phosphate</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwNuC59X3sps_PUqpVih4qeAtpEnWblk3Mdke6qc3ZS2ePA3z-M08GEJuEe4RQDwkBAlQAsoSKcdSnpEJMkFLKSt5TiYANB9n-H5JrlLaAcCM8npC1ovOmSF664JP7eBs8d32pghbn8JWD67YHmw8qjtxqWh8PFmjB90dhtYUOoSuzbb1fbomF43ukrv51Sl5e1qs58ty9fr8Mn9claZCPpQGNozWZoNaINaW8o2uwWkB1AhgVDuruajAcIOVqBrLJAor0M2cEEw3ppqSu7E3RP-1d2lQO7-PfX6pKAoGjHEUmcKRMtGnFF2jQmw_dTwoBHUcT43jqTyeOo6nZM7QMZMy23-4-Nf8f-gH7NFzfw</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Chennah, A.</creator><creator>Naciri, Y.</creator><creator>Taoufyq, A.</creator><creator>Bakiz, B.</creator><creator>Bazzi, L.</creator><creator>Guinneton, F.</creator><creator>Villain, S.</creator><creator>Gavarri, J. R.</creator><creator>Benlhachemi, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9299-2603</orcidid></search><sort><creationdate>20190215</creationdate><title>Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications</title><author>Chennah, A. ; Naciri, Y. ; Taoufyq, A. ; Bakiz, B. ; Bazzi, L. ; Guinneton, F. ; Villain, S. ; Gavarri, J. R. ; Benlhachemi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c0b524cb1a7114d26ba40ea702c7052aeda6730c6c1373fd5817d71e9e775afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonium dihydrogen phosphate</topic><topic>Anodes</topic><topic>Aqueous solutions</topic><topic>Chemical oxygen demand</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Degradation</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Fluorine</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Organic chemistry</topic><topic>Physical Chemistry</topic><topic>Precursors</topic><topic>Raman spectroscopy</topic><topic>Research Article</topic><topic>Rhodamine</topic><topic>Scanning electron microscopy</topic><topic>Spectrophotometry</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Tin oxides</topic><topic>X-ray diffraction</topic><topic>Zinc phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chennah, A.</creatorcontrib><creatorcontrib>Naciri, Y.</creatorcontrib><creatorcontrib>Taoufyq, A.</creatorcontrib><creatorcontrib>Bakiz, B.</creatorcontrib><creatorcontrib>Bazzi, L.</creatorcontrib><creatorcontrib>Guinneton, F.</creatorcontrib><creatorcontrib>Villain, S.</creatorcontrib><creatorcontrib>Gavarri, J. R.</creatorcontrib><creatorcontrib>Benlhachemi, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chennah, A.</au><au>Naciri, Y.</au><au>Taoufyq, A.</au><au>Bakiz, B.</au><au>Bazzi, L.</au><au>Guinneton, F.</au><au>Villain, S.</au><au>Gavarri, J. R.</au><au>Benlhachemi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>49</volume><issue>2</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>Zinc phosphate hydrate Zn
3
(PO
4
)
2
·4H
2
O thin films were deposited making use of chronoamperometric mode, on three types of substrates: fluorine-doped tin oxide (FTO) on glass, stainless steel, and titanium. The precursors were solutions in aqueous medium of Zn(NO
3
)
2
·6H
2
O and NH
4
H
2
PO
4
. The effects of various parameters (concentrations of starting precursors, nature of substrates) on the properties of electrodeposited films were analyzed. The films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical cyclic voltammetry. The material Zn
3
(PO
4
)
2
·4H
2
O, electrodeposited on the three different substrates to form three types of anodes, crystallized in the orthorhombic structure of hopeite β. The first determinations of the electrocatalytic degradation of rhodamine B (RhB) were performed using the three types of anodes. The RhB degradation was followed by UV–Visible spectrophotometry and also by chemical oxygen demand: it was found that the best degradation was obtained on FTO substrate.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-018-1261-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9299-2603</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2019-02, Vol.49 (2), p.163-177 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2175055617 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ammonium dihydrogen phosphate Anodes Aqueous solutions Chemical oxygen demand Chemistry Chemistry and Materials Science Crystallization Degradation Electrochemistry Electrodeposition Fluorine Industrial Chemistry/Chemical Engineering Organic chemistry Physical Chemistry Precursors Raman spectroscopy Research Article Rhodamine Scanning electron microscopy Spectrophotometry Stainless steels Substrates Thin films Tin oxides X-ray diffraction Zinc phosphate |
title | Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposited%20zinc%20phosphate%20hydrate%20electrodes%20for%20electrocatalytic%20applications&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Chennah,%20A.&rft.date=2019-02-15&rft.volume=49&rft.issue=2&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-018-1261-8&rft_dat=%3Cproquest_cross%3E2175055617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175055617&rft_id=info:pmid/&rfr_iscdi=true |