Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation

We present a novel variation of the pulsed laser deposition (PLD) technique, aimed at reducing the number of particulates produced and consequently the linear propagation loss observed in the resulting crystal waveguides. The approach relies upon configuring the system to effectively provide bi-dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2019-02, Vol.125 (2), p.1-8, Article 152
Hauptverfasser: Prentice, Jake J., Grant-Jacob, James A., Kurilchik, Sergey V., Mackenzie, Jacob I., Eason, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 125
creator Prentice, Jake J.
Grant-Jacob, James A.
Kurilchik, Sergey V.
Mackenzie, Jacob I.
Eason, Robert W.
description We present a novel variation of the pulsed laser deposition (PLD) technique, aimed at reducing the number of particulates produced and consequently the linear propagation loss observed in the resulting crystal waveguides. The approach relies upon configuring the system to effectively provide bi-directional ablation, whereby the incidence angle of the fixed pulsed laser beam with respect to the target surface changes sign, depending upon the rotation angle and position of the target. Such an alternating ablation direction is intended to reduce the buildup of undesirable periodic surface structures, such as directional cones, believed to be a major source of particulates within the growing film while keeping the plume stationary with respect to the substrate. We show that targets ablated using this technique have fewer directional structures and a decreased surface roughness. Furthermore, using PLD-grown Y 3 Ga 5 O 12 as the exemplar crystal film, we compare growths with uni- and bi-directional ablation and demonstrate reduction from ~ 0.9 to ~ 0.23 dB/cm in the average waveguide propagation losses via the latter.
doi_str_mv 10.1007/s00339-019-2456-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175055358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175055358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-30612ec1b4e6a52d169a0c1748ba8cb8e5352969780591c0d55d8c7155342b6d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSbLKbo9RPKNiDXryEbDYtKdvdOskq_fdureDJuQwMz_syPIRccrjmAOVNApDSMOCGiUJppo7IhBdSMNASjskETFGyShp9Ss5SWsM4hRAT8r5wmKMfWpcDxdAMPse-o7Gji_kdW2H_1VGPu5Rd28Yu0GVsN4l-RkfryJqI4Yd3Lc0OVyHTiOia6PbHc3KydG0KF797St4e7l9nT2z-8vg8u50zL5XJTILmInheF0E7JRqujQPPy6KqXeXrKiiphNGmrEAZ7qFRqql8yZWShah1I6fk6tC7xf5jCCnbdT_g-FOygpcKRlBVI8UPlMc-JQxLu8W4cbizHOxeoT0otKNCu1do1ZgRh0wa2W4V8K_5_9A3EXVzmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175055358</pqid></control><display><type>article</type><title>Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation</title><source>SpringerNature Journals</source><creator>Prentice, Jake J. ; Grant-Jacob, James A. ; Kurilchik, Sergey V. ; Mackenzie, Jacob I. ; Eason, Robert W.</creator><creatorcontrib>Prentice, Jake J. ; Grant-Jacob, James A. ; Kurilchik, Sergey V. ; Mackenzie, Jacob I. ; Eason, Robert W.</creatorcontrib><description>We present a novel variation of the pulsed laser deposition (PLD) technique, aimed at reducing the number of particulates produced and consequently the linear propagation loss observed in the resulting crystal waveguides. The approach relies upon configuring the system to effectively provide bi-directional ablation, whereby the incidence angle of the fixed pulsed laser beam with respect to the target surface changes sign, depending upon the rotation angle and position of the target. Such an alternating ablation direction is intended to reduce the buildup of undesirable periodic surface structures, such as directional cones, believed to be a major source of particulates within the growing film while keeping the plume stationary with respect to the substrate. We show that targets ablated using this technique have fewer directional structures and a decreased surface roughness. Furthermore, using PLD-grown Y 3 Ga 5 O 12 as the exemplar crystal film, we compare growths with uni- and bi-directional ablation and demonstrate reduction from ~ 0.9 to ~ 0.23 dB/cm in the average waveguide propagation losses via the latter.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-019-2456-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cones ; Crystal growth ; Incidence angle ; Laser beams ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Particulates ; Physics ; Physics and Astronomy ; Processes ; Pulsed laser deposition ; Pulsed lasers ; Reduction ; Substrates ; Surface roughness ; Surfaces and Interfaces ; Thin Films ; Wave propagation ; Waveguides</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2019-02, Vol.125 (2), p.1-8, Article 152</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-30612ec1b4e6a52d169a0c1748ba8cb8e5352969780591c0d55d8c7155342b6d3</citedby><cites>FETCH-LOGICAL-c359t-30612ec1b4e6a52d169a0c1748ba8cb8e5352969780591c0d55d8c7155342b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-019-2456-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-019-2456-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Prentice, Jake J.</creatorcontrib><creatorcontrib>Grant-Jacob, James A.</creatorcontrib><creatorcontrib>Kurilchik, Sergey V.</creatorcontrib><creatorcontrib>Mackenzie, Jacob I.</creatorcontrib><creatorcontrib>Eason, Robert W.</creatorcontrib><title>Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>We present a novel variation of the pulsed laser deposition (PLD) technique, aimed at reducing the number of particulates produced and consequently the linear propagation loss observed in the resulting crystal waveguides. The approach relies upon configuring the system to effectively provide bi-directional ablation, whereby the incidence angle of the fixed pulsed laser beam with respect to the target surface changes sign, depending upon the rotation angle and position of the target. Such an alternating ablation direction is intended to reduce the buildup of undesirable periodic surface structures, such as directional cones, believed to be a major source of particulates within the growing film while keeping the plume stationary with respect to the substrate. We show that targets ablated using this technique have fewer directional structures and a decreased surface roughness. Furthermore, using PLD-grown Y 3 Ga 5 O 12 as the exemplar crystal film, we compare growths with uni- and bi-directional ablation and demonstrate reduction from ~ 0.9 to ~ 0.23 dB/cm in the average waveguide propagation losses via the latter.</description><subject>Ablation</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cones</subject><subject>Crystal growth</subject><subject>Incidence angle</subject><subject>Laser beams</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Particulates</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Reduction</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSbLKbo9RPKNiDXryEbDYtKdvdOskq_fdureDJuQwMz_syPIRccrjmAOVNApDSMOCGiUJppo7IhBdSMNASjskETFGyShp9Ss5SWsM4hRAT8r5wmKMfWpcDxdAMPse-o7Gji_kdW2H_1VGPu5Rd28Yu0GVsN4l-RkfryJqI4Yd3Lc0OVyHTiOia6PbHc3KydG0KF797St4e7l9nT2z-8vg8u50zL5XJTILmInheF0E7JRqujQPPy6KqXeXrKiiphNGmrEAZ7qFRqql8yZWShah1I6fk6tC7xf5jCCnbdT_g-FOygpcKRlBVI8UPlMc-JQxLu8W4cbizHOxeoT0otKNCu1do1ZgRh0wa2W4V8K_5_9A3EXVzmA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Prentice, Jake J.</creator><creator>Grant-Jacob, James A.</creator><creator>Kurilchik, Sergey V.</creator><creator>Mackenzie, Jacob I.</creator><creator>Eason, Robert W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation</title><author>Prentice, Jake J. ; Grant-Jacob, James A. ; Kurilchik, Sergey V. ; Mackenzie, Jacob I. ; Eason, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-30612ec1b4e6a52d169a0c1748ba8cb8e5352969780591c0d55d8c7155342b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablation</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cones</topic><topic>Crystal growth</topic><topic>Incidence angle</topic><topic>Laser beams</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Particulates</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Reduction</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prentice, Jake J.</creatorcontrib><creatorcontrib>Grant-Jacob, James A.</creatorcontrib><creatorcontrib>Kurilchik, Sergey V.</creatorcontrib><creatorcontrib>Mackenzie, Jacob I.</creatorcontrib><creatorcontrib>Eason, Robert W.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prentice, Jake J.</au><au>Grant-Jacob, James A.</au><au>Kurilchik, Sergey V.</au><au>Mackenzie, Jacob I.</au><au>Eason, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>125</volume><issue>2</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>152</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We present a novel variation of the pulsed laser deposition (PLD) technique, aimed at reducing the number of particulates produced and consequently the linear propagation loss observed in the resulting crystal waveguides. The approach relies upon configuring the system to effectively provide bi-directional ablation, whereby the incidence angle of the fixed pulsed laser beam with respect to the target surface changes sign, depending upon the rotation angle and position of the target. Such an alternating ablation direction is intended to reduce the buildup of undesirable periodic surface structures, such as directional cones, believed to be a major source of particulates within the growing film while keeping the plume stationary with respect to the substrate. We show that targets ablated using this technique have fewer directional structures and a decreased surface roughness. Furthermore, using PLD-grown Y 3 Ga 5 O 12 as the exemplar crystal film, we compare growths with uni- and bi-directional ablation and demonstrate reduction from ~ 0.9 to ~ 0.23 dB/cm in the average waveguide propagation losses via the latter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-019-2456-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2019-02, Vol.125 (2), p.1-8, Article 152
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2175055358
source SpringerNature Journals
subjects Ablation
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Cones
Crystal growth
Incidence angle
Laser beams
Machines
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Particulates
Physics
Physics and Astronomy
Processes
Pulsed laser deposition
Pulsed lasers
Reduction
Substrates
Surface roughness
Surfaces and Interfaces
Thin Films
Wave propagation
Waveguides
title Particulate reduction in PLD-grown crystalline films via bi-directional target irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particulate%20reduction%20in%20PLD-grown%20crystalline%20films%20via%20bi-directional%20target%20irradiation&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Prentice,%20Jake%20J.&rft.date=2019-02-01&rft.volume=125&rft.issue=2&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=152&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-019-2456-5&rft_dat=%3Cproquest_cross%3E2175055358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175055358&rft_id=info:pmid/&rfr_iscdi=true