CONGRUENCES ON MONOIDS OF ORDER-PRESERVING OR ORDER-REVERSING TRANSFORMATIONS ON A FINITE CHAIN
This paper is mainly dedicated to describing the congruences on certain monoids of transformations on a finite chain $X_n$ with $n$ elements. Namely, we consider the monoids $\od_n$ and $\mpod_n$ of all full, respectively partial, transformations on $X_n$ that preserve or reverse the order, as well...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2005-05, Vol.47 (2), p.413-424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 2 |
container_start_page | 413 |
container_title | Glasgow mathematical journal |
container_volume | 47 |
creator | FERNANDES, VÍTOR H. GOMES, GRACINDA M. S. JESUS, MANUEL M. |
description | This paper is mainly dedicated to describing the congruences on certain monoids of transformations on a finite chain $X_n$ with $n$ elements. Namely, we consider the monoids $\od_n$ and $\mpod_n$ of all full, respectively partial, transformations on $X_n$ that preserve or reverse the order, as well as the submonoid $\po_n$ of $\mpod_n$ of all its order-preserving elements. The inverse monoid $\podi_n$ of all injective elements of $\mpod_n$ is also considered. We show that in $\po_n$ any congruence is a Rees congruence, but this may not happen in the monoids $\od_n$, $\podi_n$ and $\mpod_n$. However in all these cases the congruences form a chain. |
doi_str_mv | 10.1017/S0017089505002648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_217502576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089505002648</cupid><sourcerecordid>1399608381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4f6614ce324030d02e801cdaabb726d09b42bc3483bebb2fa3cae27420f279a53</originalsourceid><addsrcrecordid>eNp1UE1Pg0AQ3RhNrNUf4I14R_cDWDgSulBiu9iFNt42u3QxrdYqtIn-exfb6MF4mY83782bDADXCN4iiOhdCW2EYeRDH0IceOEJGCAviFwfRo-nYNCP3X5-Di66bm1bYrsBkEnBMzFnPGGlU3BnWvAiH9kydQoxYsJ9EKxkYpHzzAJHTLAFE2UPVSLmZVqIaVzlBf_eEDtpzvOKOck4zvklOGvUS2eujnkI5imrkrE7KbI8iSduTSK6c70mCJBXG4I9SOASYhNCVC-V0priYAkj7WFdEy8k2miNG0VqZTD1MGwwjZRPhuDmsPet3b7vTbeT6-2-fbWWEiPqQ-zTwJLQgVS3265rTSPf2tVGtZ8SQdm_Uf55o9W4B82q25mPH4Fqn2VACfVlkM0knlV8Mronkls-OXqojW5Xyyfze8n_Ll8ybnqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217502576</pqid></control><display><type>article</type><title>CONGRUENCES ON MONOIDS OF ORDER-PRESERVING OR ORDER-REVERSING TRANSFORMATIONS ON A FINITE CHAIN</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>FERNANDES, VÍTOR H. ; GOMES, GRACINDA M. S. ; JESUS, MANUEL M.</creator><creatorcontrib>FERNANDES, VÍTOR H. ; GOMES, GRACINDA M. S. ; JESUS, MANUEL M.</creatorcontrib><description>This paper is mainly dedicated to describing the congruences on certain monoids of transformations on a finite chain $X_n$ with $n$ elements. Namely, we consider the monoids $\od_n$ and $\mpod_n$ of all full, respectively partial, transformations on $X_n$ that preserve or reverse the order, as well as the submonoid $\po_n$ of $\mpod_n$ of all its order-preserving elements. The inverse monoid $\podi_n$ of all injective elements of $\mpod_n$ is also considered. We show that in $\po_n$ any congruence is a Rees congruence, but this may not happen in the monoids $\od_n$, $\podi_n$ and $\mpod_n$. However in all these cases the congruences form a chain.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089505002648</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>20M05 ; 20M17 ; 20M20</subject><ispartof>Glasgow mathematical journal, 2005-05, Vol.47 (2), p.413-424</ispartof><rights>2005 Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4f6614ce324030d02e801cdaabb726d09b42bc3483bebb2fa3cae27420f279a53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089505002648/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>FERNANDES, VÍTOR H.</creatorcontrib><creatorcontrib>GOMES, GRACINDA M. S.</creatorcontrib><creatorcontrib>JESUS, MANUEL M.</creatorcontrib><title>CONGRUENCES ON MONOIDS OF ORDER-PRESERVING OR ORDER-REVERSING TRANSFORMATIONS ON A FINITE CHAIN</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>This paper is mainly dedicated to describing the congruences on certain monoids of transformations on a finite chain $X_n$ with $n$ elements. Namely, we consider the monoids $\od_n$ and $\mpod_n$ of all full, respectively partial, transformations on $X_n$ that preserve or reverse the order, as well as the submonoid $\po_n$ of $\mpod_n$ of all its order-preserving elements. The inverse monoid $\podi_n$ of all injective elements of $\mpod_n$ is also considered. We show that in $\po_n$ any congruence is a Rees congruence, but this may not happen in the monoids $\od_n$, $\podi_n$ and $\mpod_n$. However in all these cases the congruences form a chain.</description><subject>20M05</subject><subject>20M17</subject><subject>20M20</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1Pg0AQ3RhNrNUf4I14R_cDWDgSulBiu9iFNt42u3QxrdYqtIn-exfb6MF4mY83782bDADXCN4iiOhdCW2EYeRDH0IceOEJGCAviFwfRo-nYNCP3X5-Di66bm1bYrsBkEnBMzFnPGGlU3BnWvAiH9kydQoxYsJ9EKxkYpHzzAJHTLAFE2UPVSLmZVqIaVzlBf_eEDtpzvOKOck4zvklOGvUS2eujnkI5imrkrE7KbI8iSduTSK6c70mCJBXG4I9SOASYhNCVC-V0priYAkj7WFdEy8k2miNG0VqZTD1MGwwjZRPhuDmsPet3b7vTbeT6-2-fbWWEiPqQ-zTwJLQgVS3265rTSPf2tVGtZ8SQdm_Uf55o9W4B82q25mPH4Fqn2VACfVlkM0knlV8Mronkls-OXqojW5Xyyfze8n_Ll8ybnqg</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>FERNANDES, VÍTOR H.</creator><creator>GOMES, GRACINDA M. S.</creator><creator>JESUS, MANUEL M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200505</creationdate><title>CONGRUENCES ON MONOIDS OF ORDER-PRESERVING OR ORDER-REVERSING TRANSFORMATIONS ON A FINITE CHAIN</title><author>FERNANDES, VÍTOR H. ; GOMES, GRACINDA M. S. ; JESUS, MANUEL M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4f6614ce324030d02e801cdaabb726d09b42bc3483bebb2fa3cae27420f279a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>20M05</topic><topic>20M17</topic><topic>20M20</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FERNANDES, VÍTOR H.</creatorcontrib><creatorcontrib>GOMES, GRACINDA M. S.</creatorcontrib><creatorcontrib>JESUS, MANUEL M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FERNANDES, VÍTOR H.</au><au>GOMES, GRACINDA M. S.</au><au>JESUS, MANUEL M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONGRUENCES ON MONOIDS OF ORDER-PRESERVING OR ORDER-REVERSING TRANSFORMATIONS ON A FINITE CHAIN</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2005-05</date><risdate>2005</risdate><volume>47</volume><issue>2</issue><spage>413</spage><epage>424</epage><pages>413-424</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>This paper is mainly dedicated to describing the congruences on certain monoids of transformations on a finite chain $X_n$ with $n$ elements. Namely, we consider the monoids $\od_n$ and $\mpod_n$ of all full, respectively partial, transformations on $X_n$ that preserve or reverse the order, as well as the submonoid $\po_n$ of $\mpod_n$ of all its order-preserving elements. The inverse monoid $\podi_n$ of all injective elements of $\mpod_n$ is also considered. We show that in $\po_n$ any congruence is a Rees congruence, but this may not happen in the monoids $\od_n$, $\podi_n$ and $\mpod_n$. However in all these cases the congruences form a chain.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089505002648</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2005-05, Vol.47 (2), p.413-424 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_journals_217502576 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | 20M05 20M17 20M20 |
title | CONGRUENCES ON MONOIDS OF ORDER-PRESERVING OR ORDER-REVERSING TRANSFORMATIONS ON A FINITE CHAIN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONGRUENCES%20ON%20MONOIDS%20OF%20ORDER-PRESERVING%20OR%20ORDER-REVERSING%20TRANSFORMATIONS%20ON%20A%20FINITE%20CHAIN&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=FERNANDES,%20V%C3%8DTOR%20H.&rft.date=2005-05&rft.volume=47&rft.issue=2&rft.spage=413&rft.epage=424&rft.pages=413-424&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089505002648&rft_dat=%3Cproquest_cross%3E1399608381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217502576&rft_id=info:pmid/&rft_cupid=10_1017_S0017089505002648&rfr_iscdi=true |