An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique

An efficient self-powered synchronous electric charge extraction CMOS interface circuit dedicated to piezoelectric harvesters is proposed in this paper. Self-powered peak detection (PKD) and switch circuits are used to reduce quiescent current so that the backup or pre-charged power can be saved. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-02, Vol.65 (2), p.804-817
Hauptverfasser: Shi, Ge, Xia, Yinshui, Wang, Xiudeng, Qian, Libo, Ye, Yidie, Li, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 817
container_issue 2
container_start_page 804
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 65
creator Shi, Ge
Xia, Yinshui
Wang, Xiudeng
Qian, Libo
Ye, Yidie
Li, Qing
description An efficient self-powered synchronous electric charge extraction CMOS interface circuit dedicated to piezoelectric harvesters is proposed in this paper. Self-powered peak detection (PKD) and switch circuits are used to reduce quiescent current so that the backup or pre-charged power can be saved. A new low phase lag (LPL) PKD circuit is designed to improve the synchronous extraction efficiency, which only requires one detection capacitor to perform positive and negative PKD. The circuit can be set at general mode (G-mode) or LPL mode (LPL-mode). Under LPL-mode, the phase lag can be reduced typically by 50%, the synchronous extraction efficiency can obtained up to 94%, while the output power can reach 659~\mu \text{W} when the piezoelectric transducer original open-circuit voltage V_{\mathrm{ oc,org}}=5 V, which is 3.56 times of that of full-bridge rectifier standard energy harvesting circuit at the maximum power point. The minimum harvesting startup voltage is 1.7 V and is independent of the energy storage capacitor voltage V_{\mathrm{ DC}} . The harvesting efficiency can still reach 71.3% at V_{\mathrm{ oc,org}}=5 V. The size of the active area is 0.5 mm 2 in a 0.18- \mu \text{m} CMOS technology. Circuit may be invoked as a functional block for energy autonomous wireless sensor network node of the Internet of Things.
doi_str_mv 10.1109/TCSI.2017.2731795
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174559545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8049291</ieee_id><sourcerecordid>2174559545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e2c9604103104592180a81b047ea6f2d573e2968b09c1715d0dd934f367b4ecd3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dv0n2WEO1hUoLqeew3UzaLXVTdzdqvfnNTah4moF5b97jF0W3BI8IwfJhlRezEcUkHdGUkVSKs2hAhMhinOHkvN-5jDNGs8voyvsdxlRiRgbRz9iiSV0bbcAGVMC-jpfNJzio0NLAdwN70MEZjSYW3OaIpsp9gA_GblD-sijQzAZwtdKAcuN0awJ6VL4zNxYVR6u3rrFN61G-VW4DaPIVnNLBdNcV6K017y1cRxe12nu4-ZvD6PVpssqn8XzxPMvH81gzIUMMVMsEc9K1xlxISjKsMrLGPAWV1LQSKQMqk2yNpSYpERWuKsl4zZJ0zUFXbBjdn_4eXNPF-lDumtbZLrKkJOVCSMFFpyInlXaN9w7q8uDMm3LHkuCyJ132pMuedPlHuvPcnTwGAP71GeaSSsJ-AbfQelQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174559545</pqid></control><display><type>article</type><title>An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Ge ; Xia, Yinshui ; Wang, Xiudeng ; Qian, Libo ; Ye, Yidie ; Li, Qing</creator><creatorcontrib>Shi, Ge ; Xia, Yinshui ; Wang, Xiudeng ; Qian, Libo ; Ye, Yidie ; Li, Qing</creatorcontrib><description><![CDATA[An efficient self-powered synchronous electric charge extraction CMOS interface circuit dedicated to piezoelectric harvesters is proposed in this paper. Self-powered peak detection (PKD) and switch circuits are used to reduce quiescent current so that the backup or pre-charged power can be saved. A new low phase lag (LPL) PKD circuit is designed to improve the synchronous extraction efficiency, which only requires one detection capacitor to perform positive and negative PKD. The circuit can be set at general mode (G-mode) or LPL mode (LPL-mode). Under LPL-mode, the phase lag can be reduced typically by 50%, the synchronous extraction efficiency can obtained up to 94%, while the output power can reach <inline-formula> <tex-math notation="LaTeX">659~\mu \text{W} </tex-math></inline-formula> when the piezoelectric transducer original open-circuit voltage <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ oc,org}}=5 </tex-math></inline-formula> V, which is 3.56 times of that of full-bridge rectifier standard energy harvesting circuit at the maximum power point. The minimum harvesting startup voltage is 1.7 V and is independent of the energy storage capacitor voltage <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ DC}} </tex-math></inline-formula>. The harvesting efficiency can still reach 71.3% at <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ oc,org}}=5 </tex-math></inline-formula> V. The size of the active area is 0.5 mm 2 in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology. Circuit may be invoked as a functional block for energy autonomous wireless sensor network node of the Internet of Things.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2017.2731795</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Circuit design ; CMOS ; Efficiency ; Electric bridges ; Electric potential ; Energy harvesting ; Energy storage ; Harvesters ; integrated circuit ; Integrated circuit modeling ; low phase lag ; Maximum power ; Phase lag ; piezoelectric transducer ; Piezoelectricity ; Rectifiers ; Remote sensors ; SECE ; self-powered ; Switches ; Switching circuits ; Vibrations ; Wireless sensor networks</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2018-02, Vol.65 (2), p.804-817</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e2c9604103104592180a81b047ea6f2d573e2968b09c1715d0dd934f367b4ecd3</citedby><cites>FETCH-LOGICAL-c359t-e2c9604103104592180a81b047ea6f2d573e2968b09c1715d0dd934f367b4ecd3</cites><orcidid>0000-0002-6175-4792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8049291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8049291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Ge</creatorcontrib><creatorcontrib>Xia, Yinshui</creatorcontrib><creatorcontrib>Wang, Xiudeng</creatorcontrib><creatorcontrib>Qian, Libo</creatorcontrib><creatorcontrib>Ye, Yidie</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><title>An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[An efficient self-powered synchronous electric charge extraction CMOS interface circuit dedicated to piezoelectric harvesters is proposed in this paper. Self-powered peak detection (PKD) and switch circuits are used to reduce quiescent current so that the backup or pre-charged power can be saved. A new low phase lag (LPL) PKD circuit is designed to improve the synchronous extraction efficiency, which only requires one detection capacitor to perform positive and negative PKD. The circuit can be set at general mode (G-mode) or LPL mode (LPL-mode). Under LPL-mode, the phase lag can be reduced typically by 50%, the synchronous extraction efficiency can obtained up to 94%, while the output power can reach <inline-formula> <tex-math notation="LaTeX">659~\mu \text{W} </tex-math></inline-formula> when the piezoelectric transducer original open-circuit voltage <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ oc,org}}=5 </tex-math></inline-formula> V, which is 3.56 times of that of full-bridge rectifier standard energy harvesting circuit at the maximum power point. The minimum harvesting startup voltage is 1.7 V and is independent of the energy storage capacitor voltage <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ DC}} </tex-math></inline-formula>. The harvesting efficiency can still reach 71.3% at <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ oc,org}}=5 </tex-math></inline-formula> V. The size of the active area is 0.5 mm 2 in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology. Circuit may be invoked as a functional block for energy autonomous wireless sensor network node of the Internet of Things.]]></description><subject>Capacitors</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>Efficiency</subject><subject>Electric bridges</subject><subject>Electric potential</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Harvesters</subject><subject>integrated circuit</subject><subject>Integrated circuit modeling</subject><subject>low phase lag</subject><subject>Maximum power</subject><subject>Phase lag</subject><subject>piezoelectric transducer</subject><subject>Piezoelectricity</subject><subject>Rectifiers</subject><subject>Remote sensors</subject><subject>SECE</subject><subject>self-powered</subject><subject>Switches</subject><subject>Switching circuits</subject><subject>Vibrations</subject><subject>Wireless sensor networks</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dv0n2WEO1hUoLqeew3UzaLXVTdzdqvfnNTah4moF5b97jF0W3BI8IwfJhlRezEcUkHdGUkVSKs2hAhMhinOHkvN-5jDNGs8voyvsdxlRiRgbRz9iiSV0bbcAGVMC-jpfNJzio0NLAdwN70MEZjSYW3OaIpsp9gA_GblD-sijQzAZwtdKAcuN0awJ6VL4zNxYVR6u3rrFN61G-VW4DaPIVnNLBdNcV6K017y1cRxe12nu4-ZvD6PVpssqn8XzxPMvH81gzIUMMVMsEc9K1xlxISjKsMrLGPAWV1LQSKQMqk2yNpSYpERWuKsl4zZJ0zUFXbBjdn_4eXNPF-lDumtbZLrKkJOVCSMFFpyInlXaN9w7q8uDMm3LHkuCyJ132pMuedPlHuvPcnTwGAP71GeaSSsJ-AbfQelQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Shi, Ge</creator><creator>Xia, Yinshui</creator><creator>Wang, Xiudeng</creator><creator>Qian, Libo</creator><creator>Ye, Yidie</creator><creator>Li, Qing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6175-4792</orcidid></search><sort><creationdate>20180201</creationdate><title>An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique</title><author>Shi, Ge ; Xia, Yinshui ; Wang, Xiudeng ; Qian, Libo ; Ye, Yidie ; Li, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e2c9604103104592180a81b047ea6f2d573e2968b09c1715d0dd934f367b4ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitors</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>Efficiency</topic><topic>Electric bridges</topic><topic>Electric potential</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Harvesters</topic><topic>integrated circuit</topic><topic>Integrated circuit modeling</topic><topic>low phase lag</topic><topic>Maximum power</topic><topic>Phase lag</topic><topic>piezoelectric transducer</topic><topic>Piezoelectricity</topic><topic>Rectifiers</topic><topic>Remote sensors</topic><topic>SECE</topic><topic>self-powered</topic><topic>Switches</topic><topic>Switching circuits</topic><topic>Vibrations</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Ge</creatorcontrib><creatorcontrib>Xia, Yinshui</creatorcontrib><creatorcontrib>Wang, Xiudeng</creatorcontrib><creatorcontrib>Qian, Libo</creatorcontrib><creatorcontrib>Ye, Yidie</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Ge</au><au>Xia, Yinshui</au><au>Wang, Xiudeng</au><au>Qian, Libo</au><au>Ye, Yidie</au><au>Li, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>65</volume><issue>2</issue><spage>804</spage><epage>817</epage><pages>804-817</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[An efficient self-powered synchronous electric charge extraction CMOS interface circuit dedicated to piezoelectric harvesters is proposed in this paper. Self-powered peak detection (PKD) and switch circuits are used to reduce quiescent current so that the backup or pre-charged power can be saved. A new low phase lag (LPL) PKD circuit is designed to improve the synchronous extraction efficiency, which only requires one detection capacitor to perform positive and negative PKD. The circuit can be set at general mode (G-mode) or LPL mode (LPL-mode). Under LPL-mode, the phase lag can be reduced typically by 50%, the synchronous extraction efficiency can obtained up to 94%, while the output power can reach <inline-formula> <tex-math notation="LaTeX">659~\mu \text{W} </tex-math></inline-formula> when the piezoelectric transducer original open-circuit voltage <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ oc,org}}=5 </tex-math></inline-formula> V, which is 3.56 times of that of full-bridge rectifier standard energy harvesting circuit at the maximum power point. The minimum harvesting startup voltage is 1.7 V and is independent of the energy storage capacitor voltage <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ DC}} </tex-math></inline-formula>. The harvesting efficiency can still reach 71.3% at <inline-formula> <tex-math notation="LaTeX">V_{\mathrm{ oc,org}}=5 </tex-math></inline-formula> V. The size of the active area is 0.5 mm 2 in a 0.18-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology. Circuit may be invoked as a functional block for energy autonomous wireless sensor network node of the Internet of Things.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2017.2731795</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6175-4792</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2018-02, Vol.65 (2), p.804-817
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2174559545
source IEEE Electronic Library (IEL)
subjects Capacitors
Circuit design
CMOS
Efficiency
Electric bridges
Electric potential
Energy harvesting
Energy storage
Harvesters
integrated circuit
Integrated circuit modeling
low phase lag
Maximum power
Phase lag
piezoelectric transducer
Piezoelectricity
Rectifiers
Remote sensors
SECE
self-powered
Switches
Switching circuits
Vibrations
Wireless sensor networks
title An Efficient Self-Powered Piezoelectric Energy Harvesting CMOS Interface Circuit Based on Synchronous Charge Extraction Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Self-Powered%20Piezoelectric%20Energy%20Harvesting%20CMOS%20Interface%20Circuit%20Based%20on%20Synchronous%20Charge%20Extraction%20Technique&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Shi,%20Ge&rft.date=2018-02-01&rft.volume=65&rft.issue=2&rft.spage=804&rft.epage=817&rft.pages=804-817&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2017.2731795&rft_dat=%3Cproquest_RIE%3E2174559545%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174559545&rft_id=info:pmid/&rft_ieee_id=8049291&rfr_iscdi=true