L1-Norm Distance Linear Discriminant Analysis Based on an Effective Iterative Algorithm

Recent works have proposed two L1-norm distance measure-based linear discriminant analysis (LDA) methods, L1-LD and LDA-L1, which aim to promote the robustness of the conventional LDA against outliers. In LDA-L1, a gradient ascending iterative algorithm is applied, which, however, suffers from the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2018-01, Vol.28 (1), p.114-129
Hauptverfasser: Ye, Qiaolin, Yang, Jian, Liu, Fan, Zhao, Chunxia, Ye, Ning, Yin, Tongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 114
container_title IEEE transactions on circuits and systems for video technology
container_volume 28
creator Ye, Qiaolin
Yang, Jian
Liu, Fan
Zhao, Chunxia
Ye, Ning
Yin, Tongming
description Recent works have proposed two L1-norm distance measure-based linear discriminant analysis (LDA) methods, L1-LD and LDA-L1, which aim to promote the robustness of the conventional LDA against outliers. In LDA-L1, a gradient ascending iterative algorithm is applied, which, however, suffers from the choice of stepwise. In L1-LDA, an alternating optimization strategy is proposed to overcome this problem. In this paper, however, we show that due to the use of this strategy, L1-LDA is accompanied with some serious problems that hinder the derivation of the optimal discrimination for data. Then, we propose an effective iterative framework to solve a general L1-norm minimization-maximization ( minmax ) problem. Based on the framework, we further develop a effective L1-norm distance-based LDA (called L1-ELDA) method. Theoretical insights into the convergence and effectiveness of our algorithm are provided and further verified by extensive experimental results on image databases.
doi_str_mv 10.1109/TCSVT.2016.2596158
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174552120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7539559</ieee_id><sourcerecordid>2174552120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1c8f8b0c2ee3d46c6f26b35f0e4bcde6b29f5e1ee4d05288f6af263532402da43</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCxxDnF3nhT51hKgUoRHChwtFxnDanapNgpUt-e9EecdlaaWe18jF1LMZBS5Hez8dvHbABCZgPAPJOoT1hPIuoEQOBppwXKRIPEc3YR40IIqbQa9thnIZOXJqz4QxVbWzviRVWTDbvdhWpV1bZu-ai2y22sIr-3kUre1NzWfOI9ubb6JT5tKdi9Gi2_mlC136tLdubtMtLVcfbZ--NkNn5Oiten6XhUJA5ybBPptNdz4YAoLVXmMg_ZPEUvSM1dSdkcco8kiVQpELT2me0cKaagBJRWpX12e7i7Ds3PhmJrFs0mdO9GA3KoEEGC6FxwcLnQxBjIm3XXzYatkcLsAJo9QLMDaI4Au9DNIVQR0X9giGmOmKd_EPVslA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174552120</pqid></control><display><type>article</type><title>L1-Norm Distance Linear Discriminant Analysis Based on an Effective Iterative Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Qiaolin ; Yang, Jian ; Liu, Fan ; Zhao, Chunxia ; Ye, Ning ; Yin, Tongming</creator><creatorcontrib>Ye, Qiaolin ; Yang, Jian ; Liu, Fan ; Zhao, Chunxia ; Ye, Ning ; Yin, Tongming</creatorcontrib><description>Recent works have proposed two L1-norm distance measure-based linear discriminant analysis (LDA) methods, L1-LD and LDA-L1, which aim to promote the robustness of the conventional LDA against outliers. In LDA-L1, a gradient ascending iterative algorithm is applied, which, however, suffers from the choice of stepwise. In L1-LDA, an alternating optimization strategy is proposed to overcome this problem. In this paper, however, we show that due to the use of this strategy, L1-LDA is accompanied with some serious problems that hinder the derivation of the optimal discrimination for data. Then, we propose an effective iterative framework to solve a general L1-norm minimization-maximization ( minmax ) problem. Based on the framework, we further develop a effective L1-norm distance-based LDA (called L1-ELDA) method. Theoretical insights into the convergence and effectiveness of our algorithm are provided and further verified by extensive experimental results on image databases.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2596158</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Discriminant analysis ; Distance measurement ; Forestry ; Iterative algorithms ; Iterative framework ; Iterative methods ; L1-ELDA ; L1-norm distance measure-based linear discriminant analysis (LDA) ; Linear discriminant analysis ; Optimization ; Outliers (statistics) ; Principal component analysis ; Robustness</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2018-01, Vol.28 (1), p.114-129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1c8f8b0c2ee3d46c6f26b35f0e4bcde6b29f5e1ee4d05288f6af263532402da43</citedby><cites>FETCH-LOGICAL-c295t-1c8f8b0c2ee3d46c6f26b35f0e4bcde6b29f5e1ee4d05288f6af263532402da43</cites><orcidid>0000-0002-8793-8610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7539559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7539559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Qiaolin</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Zhao, Chunxia</creatorcontrib><creatorcontrib>Ye, Ning</creatorcontrib><creatorcontrib>Yin, Tongming</creatorcontrib><title>L1-Norm Distance Linear Discriminant Analysis Based on an Effective Iterative Algorithm</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Recent works have proposed two L1-norm distance measure-based linear discriminant analysis (LDA) methods, L1-LD and LDA-L1, which aim to promote the robustness of the conventional LDA against outliers. In LDA-L1, a gradient ascending iterative algorithm is applied, which, however, suffers from the choice of stepwise. In L1-LDA, an alternating optimization strategy is proposed to overcome this problem. In this paper, however, we show that due to the use of this strategy, L1-LDA is accompanied with some serious problems that hinder the derivation of the optimal discrimination for data. Then, we propose an effective iterative framework to solve a general L1-norm minimization-maximization ( minmax ) problem. Based on the framework, we further develop a effective L1-norm distance-based LDA (called L1-ELDA) method. Theoretical insights into the convergence and effectiveness of our algorithm are provided and further verified by extensive experimental results on image databases.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Discriminant analysis</subject><subject>Distance measurement</subject><subject>Forestry</subject><subject>Iterative algorithms</subject><subject>Iterative framework</subject><subject>Iterative methods</subject><subject>L1-ELDA</subject><subject>L1-norm distance measure-based linear discriminant analysis (LDA)</subject><subject>Linear discriminant analysis</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Principal component analysis</subject><subject>Robustness</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCxxDnF3nhT51hKgUoRHChwtFxnDanapNgpUt-e9EecdlaaWe18jF1LMZBS5Hez8dvHbABCZgPAPJOoT1hPIuoEQOBppwXKRIPEc3YR40IIqbQa9thnIZOXJqz4QxVbWzviRVWTDbvdhWpV1bZu-ai2y22sIr-3kUre1NzWfOI9ubb6JT5tKdi9Gi2_mlC136tLdubtMtLVcfbZ--NkNn5Oiten6XhUJA5ybBPptNdz4YAoLVXmMg_ZPEUvSM1dSdkcco8kiVQpELT2me0cKaagBJRWpX12e7i7Ds3PhmJrFs0mdO9GA3KoEEGC6FxwcLnQxBjIm3XXzYatkcLsAJo9QLMDaI4Au9DNIVQR0X9giGmOmKd_EPVslA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Ye, Qiaolin</creator><creator>Yang, Jian</creator><creator>Liu, Fan</creator><creator>Zhao, Chunxia</creator><creator>Ye, Ning</creator><creator>Yin, Tongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8793-8610</orcidid></search><sort><creationdate>201801</creationdate><title>L1-Norm Distance Linear Discriminant Analysis Based on an Effective Iterative Algorithm</title><author>Ye, Qiaolin ; Yang, Jian ; Liu, Fan ; Zhao, Chunxia ; Ye, Ning ; Yin, Tongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1c8f8b0c2ee3d46c6f26b35f0e4bcde6b29f5e1ee4d05288f6af263532402da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Discriminant analysis</topic><topic>Distance measurement</topic><topic>Forestry</topic><topic>Iterative algorithms</topic><topic>Iterative framework</topic><topic>Iterative methods</topic><topic>L1-ELDA</topic><topic>L1-norm distance measure-based linear discriminant analysis (LDA)</topic><topic>Linear discriminant analysis</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Principal component analysis</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Qiaolin</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Liu, Fan</creatorcontrib><creatorcontrib>Zhao, Chunxia</creatorcontrib><creatorcontrib>Ye, Ning</creatorcontrib><creatorcontrib>Yin, Tongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Qiaolin</au><au>Yang, Jian</au><au>Liu, Fan</au><au>Zhao, Chunxia</au><au>Ye, Ning</au><au>Yin, Tongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L1-Norm Distance Linear Discriminant Analysis Based on an Effective Iterative Algorithm</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2018-01</date><risdate>2018</risdate><volume>28</volume><issue>1</issue><spage>114</spage><epage>129</epage><pages>114-129</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Recent works have proposed two L1-norm distance measure-based linear discriminant analysis (LDA) methods, L1-LD and LDA-L1, which aim to promote the robustness of the conventional LDA against outliers. In LDA-L1, a gradient ascending iterative algorithm is applied, which, however, suffers from the choice of stepwise. In L1-LDA, an alternating optimization strategy is proposed to overcome this problem. In this paper, however, we show that due to the use of this strategy, L1-LDA is accompanied with some serious problems that hinder the derivation of the optimal discrimination for data. Then, we propose an effective iterative framework to solve a general L1-norm minimization-maximization ( minmax ) problem. Based on the framework, we further develop a effective L1-norm distance-based LDA (called L1-ELDA) method. Theoretical insights into the convergence and effectiveness of our algorithm are provided and further verified by extensive experimental results on image databases.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2596158</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8793-8610</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2018-01, Vol.28 (1), p.114-129
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2174552120
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
Discriminant analysis
Distance measurement
Forestry
Iterative algorithms
Iterative framework
Iterative methods
L1-ELDA
L1-norm distance measure-based linear discriminant analysis (LDA)
Linear discriminant analysis
Optimization
Outliers (statistics)
Principal component analysis
Robustness
title L1-Norm Distance Linear Discriminant Analysis Based on an Effective Iterative Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L1-Norm%20Distance%20Linear%20Discriminant%20Analysis%20Based%20on%20an%20Effective%20Iterative%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Ye,%20Qiaolin&rft.date=2018-01&rft.volume=28&rft.issue=1&rft.spage=114&rft.epage=129&rft.pages=114-129&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2596158&rft_dat=%3Cproquest_RIE%3E2174552120%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174552120&rft_id=info:pmid/&rft_ieee_id=7539559&rfr_iscdi=true