Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz
A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-G...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2018-02, Vol.15 (2), p.163-167 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Cooper, Ken B. Rodriguez Monje, Raquel Millan, Luis Lebsock, Matthew Tanelli, Simone Siles, Jose V. Lee, Choonsup Brown, Andrew |
description | A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds. |
doi_str_mv | 10.1109/LGRS.2017.2776078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174546757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8246732</ieee_id><sourcerecordid>2174546757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgZcJ063x_LUrUVSoXWgrthkszolDaJM8mi_noTWty89xbn3gcHgHuMJhgj_bScrzcTgrCcECkFkuoCjDDnKkNc4svhZjzjWn1eg5uUdggRppQcgdW0PdSp-XYxFHDRHUIZ2iPc1F1VhuoLbtMwn4P3LrqqDXYPp3mqY9OGuoJrW9oIV64fWFE4X_zegitv98ndnfcYbF9fPmaLbPk-f5tNl1lBNG0zQbQkSjFucypy5ImwiGpGKc95TxSl5gjpsrAMFTl1Ineel8J5ZqUQnJd0DB5PvU2sfzqXWrOru1j1Lw3BknEmJJc9hU9UEeuUovOmieFg49FgZAZtZtBmBm3mrK3PPJwywTn3zyvSN1JC_wCcJmf9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546757</pqid></control><display><type>article</type><title>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Cooper, Ken B. ; Rodriguez Monje, Raquel ; Millan, Luis ; Lebsock, Matthew ; Tanelli, Simone ; Siles, Jose V. ; Lee, Choonsup ; Brown, Andrew</creator><creatorcontrib>Cooper, Ken B. ; Rodriguez Monje, Raquel ; Millan, Luis ; Lebsock, Matthew ; Tanelli, Simone ; Siles, Jose V. ; Lee, Choonsup ; Brown, Andrew</creatorcontrib><description>A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2776078</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absolute humidity ; Absorption ; Antenna gain ; Atmospheric absorption ; Atmospheric attenuation ; Atmospheric measurements ; Atmospheric models ; Chirp ; Circular polarization ; Clouds ; Continuous wave radar ; Dependence ; Detection ; Duplexers ; Echoes ; Frequency dependence ; Handling ; Humidity ; Humidity measurement ; Marine fishes ; Measuring instruments ; Millimeter waves ; millimeter-wave radar ; Noise levels ; Radar ; Rain ; Rainfall ; Rangefinding ; Schottky diodes ; Water absorption ; Wave attenuation</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.163-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</citedby><cites>FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</cites><orcidid>0000-0001-5516-6882 ; 0000-0001-9826-7157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8246732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8246732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cooper, Ken B.</creatorcontrib><creatorcontrib>Rodriguez Monje, Raquel</creatorcontrib><creatorcontrib>Millan, Luis</creatorcontrib><creatorcontrib>Lebsock, Matthew</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Siles, Jose V.</creatorcontrib><creatorcontrib>Lee, Choonsup</creatorcontrib><creatorcontrib>Brown, Andrew</creatorcontrib><title>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.</description><subject>Absolute humidity</subject><subject>Absorption</subject><subject>Antenna gain</subject><subject>Atmospheric absorption</subject><subject>Atmospheric attenuation</subject><subject>Atmospheric measurements</subject><subject>Atmospheric models</subject><subject>Chirp</subject><subject>Circular polarization</subject><subject>Clouds</subject><subject>Continuous wave radar</subject><subject>Dependence</subject><subject>Detection</subject><subject>Duplexers</subject><subject>Echoes</subject><subject>Frequency dependence</subject><subject>Handling</subject><subject>Humidity</subject><subject>Humidity measurement</subject><subject>Marine fishes</subject><subject>Measuring instruments</subject><subject>Millimeter waves</subject><subject>millimeter-wave radar</subject><subject>Noise levels</subject><subject>Radar</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rangefinding</subject><subject>Schottky diodes</subject><subject>Water absorption</subject><subject>Wave attenuation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgZcJ063x_LUrUVSoXWgrthkszolDaJM8mi_noTWty89xbn3gcHgHuMJhgj_bScrzcTgrCcECkFkuoCjDDnKkNc4svhZjzjWn1eg5uUdggRppQcgdW0PdSp-XYxFHDRHUIZ2iPc1F1VhuoLbtMwn4P3LrqqDXYPp3mqY9OGuoJrW9oIV64fWFE4X_zegitv98ndnfcYbF9fPmaLbPk-f5tNl1lBNG0zQbQkSjFucypy5ImwiGpGKc95TxSl5gjpsrAMFTl1Ineel8J5ZqUQnJd0DB5PvU2sfzqXWrOru1j1Lw3BknEmJJc9hU9UEeuUovOmieFg49FgZAZtZtBmBm3mrK3PPJwywTn3zyvSN1JC_wCcJmf9</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Cooper, Ken B.</creator><creator>Rodriguez Monje, Raquel</creator><creator>Millan, Luis</creator><creator>Lebsock, Matthew</creator><creator>Tanelli, Simone</creator><creator>Siles, Jose V.</creator><creator>Lee, Choonsup</creator><creator>Brown, Andrew</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5516-6882</orcidid><orcidid>https://orcid.org/0000-0001-9826-7157</orcidid></search><sort><creationdate>20180201</creationdate><title>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</title><author>Cooper, Ken B. ; Rodriguez Monje, Raquel ; Millan, Luis ; Lebsock, Matthew ; Tanelli, Simone ; Siles, Jose V. ; Lee, Choonsup ; Brown, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absolute humidity</topic><topic>Absorption</topic><topic>Antenna gain</topic><topic>Atmospheric absorption</topic><topic>Atmospheric attenuation</topic><topic>Atmospheric measurements</topic><topic>Atmospheric models</topic><topic>Chirp</topic><topic>Circular polarization</topic><topic>Clouds</topic><topic>Continuous wave radar</topic><topic>Dependence</topic><topic>Detection</topic><topic>Duplexers</topic><topic>Echoes</topic><topic>Frequency dependence</topic><topic>Handling</topic><topic>Humidity</topic><topic>Humidity measurement</topic><topic>Marine fishes</topic><topic>Measuring instruments</topic><topic>Millimeter waves</topic><topic>millimeter-wave radar</topic><topic>Noise levels</topic><topic>Radar</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rangefinding</topic><topic>Schottky diodes</topic><topic>Water absorption</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Ken B.</creatorcontrib><creatorcontrib>Rodriguez Monje, Raquel</creatorcontrib><creatorcontrib>Millan, Luis</creatorcontrib><creatorcontrib>Lebsock, Matthew</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Siles, Jose V.</creatorcontrib><creatorcontrib>Lee, Choonsup</creatorcontrib><creatorcontrib>Brown, Andrew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cooper, Ken B.</au><au>Rodriguez Monje, Raquel</au><au>Millan, Luis</au><au>Lebsock, Matthew</au><au>Tanelli, Simone</au><au>Siles, Jose V.</au><au>Lee, Choonsup</au><au>Brown, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>163</spage><epage>167</epage><pages>163-167</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2776078</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5516-6882</orcidid><orcidid>https://orcid.org/0000-0001-9826-7157</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.163-167 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2174546757 |
source | IEEE Electronic Library (IEL) |
subjects | Absolute humidity Absorption Antenna gain Atmospheric absorption Atmospheric attenuation Atmospheric measurements Atmospheric models Chirp Circular polarization Clouds Continuous wave radar Dependence Detection Duplexers Echoes Frequency dependence Handling Humidity Humidity measurement Marine fishes Measuring instruments Millimeter waves millimeter-wave radar Noise levels Radar Rain Rainfall Rangefinding Schottky diodes Water absorption Wave attenuation |
title | Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Humidity%20Sounding%20Using%20Differential%20Absorption%20Radar%20Near%20183%20GHz&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Cooper,%20Ken%20B.&rft.date=2018-02-01&rft.volume=15&rft.issue=2&rft.spage=163&rft.epage=167&rft.pages=163-167&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2776078&rft_dat=%3Cproquest_RIE%3E2174546757%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546757&rft_id=info:pmid/&rft_ieee_id=8246732&rfr_iscdi=true |