Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz

A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2018-02, Vol.15 (2), p.163-167
Hauptverfasser: Cooper, Ken B., Rodriguez Monje, Raquel, Millan, Luis, Lebsock, Matthew, Tanelli, Simone, Siles, Jose V., Lee, Choonsup, Brown, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 2
container_start_page 163
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Cooper, Ken B.
Rodriguez Monje, Raquel
Millan, Luis
Lebsock, Matthew
Tanelli, Simone
Siles, Jose V.
Lee, Choonsup
Brown, Andrew
description A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.
doi_str_mv 10.1109/LGRS.2017.2776078
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174546757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8246732</ieee_id><sourcerecordid>2174546757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgZcJ063x_LUrUVSoXWgrthkszolDaJM8mi_noTWty89xbn3gcHgHuMJhgj_bScrzcTgrCcECkFkuoCjDDnKkNc4svhZjzjWn1eg5uUdggRppQcgdW0PdSp-XYxFHDRHUIZ2iPc1F1VhuoLbtMwn4P3LrqqDXYPp3mqY9OGuoJrW9oIV64fWFE4X_zegitv98ndnfcYbF9fPmaLbPk-f5tNl1lBNG0zQbQkSjFucypy5ImwiGpGKc95TxSl5gjpsrAMFTl1Ineel8J5ZqUQnJd0DB5PvU2sfzqXWrOru1j1Lw3BknEmJJc9hU9UEeuUovOmieFg49FgZAZtZtBmBm3mrK3PPJwywTn3zyvSN1JC_wCcJmf9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546757</pqid></control><display><type>article</type><title>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Cooper, Ken B. ; Rodriguez Monje, Raquel ; Millan, Luis ; Lebsock, Matthew ; Tanelli, Simone ; Siles, Jose V. ; Lee, Choonsup ; Brown, Andrew</creator><creatorcontrib>Cooper, Ken B. ; Rodriguez Monje, Raquel ; Millan, Luis ; Lebsock, Matthew ; Tanelli, Simone ; Siles, Jose V. ; Lee, Choonsup ; Brown, Andrew</creatorcontrib><description>A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2776078</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absolute humidity ; Absorption ; Antenna gain ; Atmospheric absorption ; Atmospheric attenuation ; Atmospheric measurements ; Atmospheric models ; Chirp ; Circular polarization ; Clouds ; Continuous wave radar ; Dependence ; Detection ; Duplexers ; Echoes ; Frequency dependence ; Handling ; Humidity ; Humidity measurement ; Marine fishes ; Measuring instruments ; Millimeter waves ; millimeter-wave radar ; Noise levels ; Radar ; Rain ; Rainfall ; Rangefinding ; Schottky diodes ; Water absorption ; Wave attenuation</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.163-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</citedby><cites>FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</cites><orcidid>0000-0001-5516-6882 ; 0000-0001-9826-7157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8246732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8246732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cooper, Ken B.</creatorcontrib><creatorcontrib>Rodriguez Monje, Raquel</creatorcontrib><creatorcontrib>Millan, Luis</creatorcontrib><creatorcontrib>Lebsock, Matthew</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Siles, Jose V.</creatorcontrib><creatorcontrib>Lee, Choonsup</creatorcontrib><creatorcontrib>Brown, Andrew</creatorcontrib><title>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.</description><subject>Absolute humidity</subject><subject>Absorption</subject><subject>Antenna gain</subject><subject>Atmospheric absorption</subject><subject>Atmospheric attenuation</subject><subject>Atmospheric measurements</subject><subject>Atmospheric models</subject><subject>Chirp</subject><subject>Circular polarization</subject><subject>Clouds</subject><subject>Continuous wave radar</subject><subject>Dependence</subject><subject>Detection</subject><subject>Duplexers</subject><subject>Echoes</subject><subject>Frequency dependence</subject><subject>Handling</subject><subject>Humidity</subject><subject>Humidity measurement</subject><subject>Marine fishes</subject><subject>Measuring instruments</subject><subject>Millimeter waves</subject><subject>millimeter-wave radar</subject><subject>Noise levels</subject><subject>Radar</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rangefinding</subject><subject>Schottky diodes</subject><subject>Water absorption</subject><subject>Wave attenuation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgZcJ063x_LUrUVSoXWgrthkszolDaJM8mi_noTWty89xbn3gcHgHuMJhgj_bScrzcTgrCcECkFkuoCjDDnKkNc4svhZjzjWn1eg5uUdggRppQcgdW0PdSp-XYxFHDRHUIZ2iPc1F1VhuoLbtMwn4P3LrqqDXYPp3mqY9OGuoJrW9oIV64fWFE4X_zegitv98ndnfcYbF9fPmaLbPk-f5tNl1lBNG0zQbQkSjFucypy5ImwiGpGKc95TxSl5gjpsrAMFTl1Ineel8J5ZqUQnJd0DB5PvU2sfzqXWrOru1j1Lw3BknEmJJc9hU9UEeuUovOmieFg49FgZAZtZtBmBm3mrK3PPJwywTn3zyvSN1JC_wCcJmf9</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Cooper, Ken B.</creator><creator>Rodriguez Monje, Raquel</creator><creator>Millan, Luis</creator><creator>Lebsock, Matthew</creator><creator>Tanelli, Simone</creator><creator>Siles, Jose V.</creator><creator>Lee, Choonsup</creator><creator>Brown, Andrew</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5516-6882</orcidid><orcidid>https://orcid.org/0000-0001-9826-7157</orcidid></search><sort><creationdate>20180201</creationdate><title>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</title><author>Cooper, Ken B. ; Rodriguez Monje, Raquel ; Millan, Luis ; Lebsock, Matthew ; Tanelli, Simone ; Siles, Jose V. ; Lee, Choonsup ; Brown, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-629728845ab36b0f26a0394335b5c29cd95009dca40cb3e6bef5d6ef4a76655d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absolute humidity</topic><topic>Absorption</topic><topic>Antenna gain</topic><topic>Atmospheric absorption</topic><topic>Atmospheric attenuation</topic><topic>Atmospheric measurements</topic><topic>Atmospheric models</topic><topic>Chirp</topic><topic>Circular polarization</topic><topic>Clouds</topic><topic>Continuous wave radar</topic><topic>Dependence</topic><topic>Detection</topic><topic>Duplexers</topic><topic>Echoes</topic><topic>Frequency dependence</topic><topic>Handling</topic><topic>Humidity</topic><topic>Humidity measurement</topic><topic>Marine fishes</topic><topic>Measuring instruments</topic><topic>Millimeter waves</topic><topic>millimeter-wave radar</topic><topic>Noise levels</topic><topic>Radar</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rangefinding</topic><topic>Schottky diodes</topic><topic>Water absorption</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Ken B.</creatorcontrib><creatorcontrib>Rodriguez Monje, Raquel</creatorcontrib><creatorcontrib>Millan, Luis</creatorcontrib><creatorcontrib>Lebsock, Matthew</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Siles, Jose V.</creatorcontrib><creatorcontrib>Lee, Choonsup</creatorcontrib><creatorcontrib>Brown, Andrew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cooper, Ken B.</au><au>Rodriguez Monje, Raquel</au><au>Millan, Luis</au><au>Lebsock, Matthew</au><au>Tanelli, Simone</au><au>Siles, Jose V.</au><au>Lee, Choonsup</au><au>Brown, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>163</spage><epage>167</epage><pages>163-167</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar's transmitter uses high- power-handling GaAs Schottky diodes to generate between 15-23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar's receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2776078</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5516-6882</orcidid><orcidid>https://orcid.org/0000-0001-9826-7157</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.163-167
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2174546757
source IEEE Electronic Library (IEL)
subjects Absolute humidity
Absorption
Antenna gain
Atmospheric absorption
Atmospheric attenuation
Atmospheric measurements
Atmospheric models
Chirp
Circular polarization
Clouds
Continuous wave radar
Dependence
Detection
Duplexers
Echoes
Frequency dependence
Handling
Humidity
Humidity measurement
Marine fishes
Measuring instruments
Millimeter waves
millimeter-wave radar
Noise levels
Radar
Rain
Rainfall
Rangefinding
Schottky diodes
Water absorption
Wave attenuation
title Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Humidity%20Sounding%20Using%20Differential%20Absorption%20Radar%20Near%20183%20GHz&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Cooper,%20Ken%20B.&rft.date=2018-02-01&rft.volume=15&rft.issue=2&rft.spage=163&rft.epage=167&rft.pages=163-167&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2776078&rft_dat=%3Cproquest_RIE%3E2174546757%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546757&rft_id=info:pmid/&rft_ieee_id=8246732&rfr_iscdi=true