Dynamic Signature Verification System Based on One Real Signature
The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2018-01, Vol.48 (1), p.228-239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 1 |
container_start_page | 228 |
container_title | IEEE transactions on cybernetics |
container_volume | 48 |
creator | Diaz, Moises Fischer, Andreas Ferrer, Miguel A. Plamondon, Rejean |
description | The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens. |
doi_str_mv | 10.1109/TCYB.2016.2630419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174545201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7775072</ieee_id><sourcerecordid>1861612852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoTub-ABGk4Isvm7lLm6SP2_wJg4Gbgk8hba_SsbazaR_235uxOcG8XO7yuS_hw9gV8BEAj--X08_JCDnIEUrBQ4hP2AWC1ENEFZ0e71L12MC5FfdH-1Gsz1kPNUDII7xg44dtZcsiDRbFV2XbrqHgg5oiL1LbFnUVLLaupTKYWEdZ4Pt5RcEb2fUff8nOcrt2NDjUPnt_elxOX4az-fPrdDwbpiKM26HNhAYOGilGJYUQmGQhysSqNNEqy2QcW1RgEy1EqCwSgkpzDDORcxsjiT672-dumvq7I9easnAprde2orpzBrQECagj9OjtP3RVd03lf2d8ahiFkffmKdhTaVM711BuNk1R2mZrgJudYrNTbHaKzUGx37k5JHdJSdlx41eoB673QEFEx2elVMQVih_HEnzS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174545201</pqid></control><display><type>article</type><title>Dynamic Signature Verification System Based on One Real Signature</title><source>IEEE Electronic Library (IEL)</source><creator>Diaz, Moises ; Fischer, Andreas ; Ferrer, Miguel A. ; Plamondon, Rejean</creator><creatorcontrib>Diaz, Moises ; Fischer, Andreas ; Ferrer, Miguel A. ; Plamondon, Rejean</creatorcontrib><description>The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2016.2630419</identifier><identifier>PMID: 28114052</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biometrics ; Duplicated signatures ; dynamic signature verification ; Hidden Markov models ; kinematic theory of rapid human movements ; Kinematics ; Neuromuscular ; Parameter modification ; Reproduction (copying) ; Signatures ; single reference signature system (SRSS) ; State of the art ; Training ; Trajectory</subject><ispartof>IEEE transactions on cybernetics, 2018-01, Vol.48 (1), p.228-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</citedby><cites>FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</cites><orcidid>0000-0003-3878-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7775072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7775072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28114052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaz, Moises</creatorcontrib><creatorcontrib>Fischer, Andreas</creatorcontrib><creatorcontrib>Ferrer, Miguel A.</creatorcontrib><creatorcontrib>Plamondon, Rejean</creatorcontrib><title>Dynamic Signature Verification System Based on One Real Signature</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.</description><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>Duplicated signatures</subject><subject>dynamic signature verification</subject><subject>Hidden Markov models</subject><subject>kinematic theory of rapid human movements</subject><subject>Kinematics</subject><subject>Neuromuscular</subject><subject>Parameter modification</subject><subject>Reproduction (copying)</subject><subject>Signatures</subject><subject>single reference signature system (SRSS)</subject><subject>State of the art</subject><subject>Training</subject><subject>Trajectory</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQx4MoTub-ABGk4Isvm7lLm6SP2_wJg4Gbgk8hba_SsbazaR_235uxOcG8XO7yuS_hw9gV8BEAj--X08_JCDnIEUrBQ4hP2AWC1ENEFZ0e71L12MC5FfdH-1Gsz1kPNUDII7xg44dtZcsiDRbFV2XbrqHgg5oiL1LbFnUVLLaupTKYWEdZ4Pt5RcEb2fUff8nOcrt2NDjUPnt_elxOX4az-fPrdDwbpiKM26HNhAYOGilGJYUQmGQhysSqNNEqy2QcW1RgEy1EqCwSgkpzDDORcxsjiT672-dumvq7I9easnAprde2orpzBrQECagj9OjtP3RVd03lf2d8ahiFkffmKdhTaVM711BuNk1R2mZrgJudYrNTbHaKzUGx37k5JHdJSdlx41eoB673QEFEx2elVMQVih_HEnzS</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Diaz, Moises</creator><creator>Fischer, Andreas</creator><creator>Ferrer, Miguel A.</creator><creator>Plamondon, Rejean</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3878-3867</orcidid></search><sort><creationdate>201801</creationdate><title>Dynamic Signature Verification System Based on One Real Signature</title><author>Diaz, Moises ; Fischer, Andreas ; Ferrer, Miguel A. ; Plamondon, Rejean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>Duplicated signatures</topic><topic>dynamic signature verification</topic><topic>Hidden Markov models</topic><topic>kinematic theory of rapid human movements</topic><topic>Kinematics</topic><topic>Neuromuscular</topic><topic>Parameter modification</topic><topic>Reproduction (copying)</topic><topic>Signatures</topic><topic>single reference signature system (SRSS)</topic><topic>State of the art</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Moises</creatorcontrib><creatorcontrib>Fischer, Andreas</creatorcontrib><creatorcontrib>Ferrer, Miguel A.</creatorcontrib><creatorcontrib>Plamondon, Rejean</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diaz, Moises</au><au>Fischer, Andreas</au><au>Ferrer, Miguel A.</au><au>Plamondon, Rejean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Signature Verification System Based on One Real Signature</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2018-01</date><risdate>2018</risdate><volume>48</volume><issue>1</issue><spage>228</spage><epage>239</epage><pages>228-239</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28114052</pmid><doi>10.1109/TCYB.2016.2630419</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3878-3867</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2018-01, Vol.48 (1), p.228-239 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_journals_2174545201 |
source | IEEE Electronic Library (IEL) |
subjects | Biological system modeling Biometrics Duplicated signatures dynamic signature verification Hidden Markov models kinematic theory of rapid human movements Kinematics Neuromuscular Parameter modification Reproduction (copying) Signatures single reference signature system (SRSS) State of the art Training Trajectory |
title | Dynamic Signature Verification System Based on One Real Signature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Signature%20Verification%20System%20Based%20on%20One%20Real%20Signature&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Diaz,%20Moises&rft.date=2018-01&rft.volume=48&rft.issue=1&rft.spage=228&rft.epage=239&rft.pages=228-239&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2016.2630419&rft_dat=%3Cproquest_RIE%3E1861612852%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174545201&rft_id=info:pmid/28114052&rft_ieee_id=7775072&rfr_iscdi=true |