Dynamic Signature Verification System Based on One Real Signature

The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2018-01, Vol.48 (1), p.228-239
Hauptverfasser: Diaz, Moises, Fischer, Andreas, Ferrer, Miguel A., Plamondon, Rejean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 228
container_title IEEE transactions on cybernetics
container_volume 48
creator Diaz, Moises
Fischer, Andreas
Ferrer, Miguel A.
Plamondon, Rejean
description The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.
doi_str_mv 10.1109/TCYB.2016.2630419
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174545201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7775072</ieee_id><sourcerecordid>1861612852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoTub-ABGk4Isvm7lLm6SP2_wJg4Gbgk8hba_SsbazaR_235uxOcG8XO7yuS_hw9gV8BEAj--X08_JCDnIEUrBQ4hP2AWC1ENEFZ0e71L12MC5FfdH-1Gsz1kPNUDII7xg44dtZcsiDRbFV2XbrqHgg5oiL1LbFnUVLLaupTKYWEdZ4Pt5RcEb2fUff8nOcrt2NDjUPnt_elxOX4az-fPrdDwbpiKM26HNhAYOGilGJYUQmGQhysSqNNEqy2QcW1RgEy1EqCwSgkpzDDORcxsjiT672-dumvq7I9easnAprde2orpzBrQECagj9OjtP3RVd03lf2d8ahiFkffmKdhTaVM711BuNk1R2mZrgJudYrNTbHaKzUGx37k5JHdJSdlx41eoB673QEFEx2elVMQVih_HEnzS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174545201</pqid></control><display><type>article</type><title>Dynamic Signature Verification System Based on One Real Signature</title><source>IEEE Electronic Library (IEL)</source><creator>Diaz, Moises ; Fischer, Andreas ; Ferrer, Miguel A. ; Plamondon, Rejean</creator><creatorcontrib>Diaz, Moises ; Fischer, Andreas ; Ferrer, Miguel A. ; Plamondon, Rejean</creatorcontrib><description>The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2016.2630419</identifier><identifier>PMID: 28114052</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Biometrics ; Duplicated signatures ; dynamic signature verification ; Hidden Markov models ; kinematic theory of rapid human movements ; Kinematics ; Neuromuscular ; Parameter modification ; Reproduction (copying) ; Signatures ; single reference signature system (SRSS) ; State of the art ; Training ; Trajectory</subject><ispartof>IEEE transactions on cybernetics, 2018-01, Vol.48 (1), p.228-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</citedby><cites>FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</cites><orcidid>0000-0003-3878-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7775072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7775072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28114052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaz, Moises</creatorcontrib><creatorcontrib>Fischer, Andreas</creatorcontrib><creatorcontrib>Ferrer, Miguel A.</creatorcontrib><creatorcontrib>Plamondon, Rejean</creatorcontrib><title>Dynamic Signature Verification System Based on One Real Signature</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.</description><subject>Biological system modeling</subject><subject>Biometrics</subject><subject>Duplicated signatures</subject><subject>dynamic signature verification</subject><subject>Hidden Markov models</subject><subject>kinematic theory of rapid human movements</subject><subject>Kinematics</subject><subject>Neuromuscular</subject><subject>Parameter modification</subject><subject>Reproduction (copying)</subject><subject>Signatures</subject><subject>single reference signature system (SRSS)</subject><subject>State of the art</subject><subject>Training</subject><subject>Trajectory</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQx4MoTub-ABGk4Isvm7lLm6SP2_wJg4Gbgk8hba_SsbazaR_235uxOcG8XO7yuS_hw9gV8BEAj--X08_JCDnIEUrBQ4hP2AWC1ENEFZ0e71L12MC5FfdH-1Gsz1kPNUDII7xg44dtZcsiDRbFV2XbrqHgg5oiL1LbFnUVLLaupTKYWEdZ4Pt5RcEb2fUff8nOcrt2NDjUPnt_elxOX4az-fPrdDwbpiKM26HNhAYOGilGJYUQmGQhysSqNNEqy2QcW1RgEy1EqCwSgkpzDDORcxsjiT672-dumvq7I9easnAprde2orpzBrQECagj9OjtP3RVd03lf2d8ahiFkffmKdhTaVM711BuNk1R2mZrgJudYrNTbHaKzUGx37k5JHdJSdlx41eoB673QEFEx2elVMQVih_HEnzS</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Diaz, Moises</creator><creator>Fischer, Andreas</creator><creator>Ferrer, Miguel A.</creator><creator>Plamondon, Rejean</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3878-3867</orcidid></search><sort><creationdate>201801</creationdate><title>Dynamic Signature Verification System Based on One Real Signature</title><author>Diaz, Moises ; Fischer, Andreas ; Ferrer, Miguel A. ; Plamondon, Rejean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ad3810182e92763332bd426ba7cb87dd699a271ab83347a2e217cf24d3f0a92e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological system modeling</topic><topic>Biometrics</topic><topic>Duplicated signatures</topic><topic>dynamic signature verification</topic><topic>Hidden Markov models</topic><topic>kinematic theory of rapid human movements</topic><topic>Kinematics</topic><topic>Neuromuscular</topic><topic>Parameter modification</topic><topic>Reproduction (copying)</topic><topic>Signatures</topic><topic>single reference signature system (SRSS)</topic><topic>State of the art</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Moises</creatorcontrib><creatorcontrib>Fischer, Andreas</creatorcontrib><creatorcontrib>Ferrer, Miguel A.</creatorcontrib><creatorcontrib>Plamondon, Rejean</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diaz, Moises</au><au>Fischer, Andreas</au><au>Ferrer, Miguel A.</au><au>Plamondon, Rejean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Signature Verification System Based on One Real Signature</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2018-01</date><risdate>2018</risdate><volume>48</volume><issue>1</issue><spage>228</spage><epage>239</epage><pages>228-239</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28114052</pmid><doi>10.1109/TCYB.2016.2630419</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3878-3867</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2018-01, Vol.48 (1), p.228-239
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2174545201
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Biometrics
Duplicated signatures
dynamic signature verification
Hidden Markov models
kinematic theory of rapid human movements
Kinematics
Neuromuscular
Parameter modification
Reproduction (copying)
Signatures
single reference signature system (SRSS)
State of the art
Training
Trajectory
title Dynamic Signature Verification System Based on One Real Signature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Signature%20Verification%20System%20Based%20on%20One%20Real%20Signature&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Diaz,%20Moises&rft.date=2018-01&rft.volume=48&rft.issue=1&rft.spage=228&rft.epage=239&rft.pages=228-239&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2016.2630419&rft_dat=%3Cproquest_RIE%3E1861612852%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174545201&rft_id=info:pmid/28114052&rft_ieee_id=7775072&rfr_iscdi=true