Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN
In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel n...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2018-05, Vol.15 (5), p.784-788 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 5 |
container_start_page | 784 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Hughes, Lloyd H. Schmitt, Michael Mou, Lichao Wang, Yuanyuan Zhu, Xiao Xiang |
description | In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated data set that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently coregistered 3-D point clouds. The satellite images, from which the patches comprising our data set are extracted, show a complex urban scene containing many elevated objects (i.e., buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development toward a generalized multisensor key-point matching procedure. |
doi_str_mv | 10.1109/LGRS.2018.2799232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174543296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8314449</ieee_id><sourcerecordid>2174543296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-194b24513c3f31193d4f6d776b3b9e015b0d42a58bbb23c5296a8ecd2e3420633</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQq3tDyi9LPQcu7Mfye5RQmsFUdFKe1s22Y1GNEl348F_3wSlp5lhnncGHoSegYwAiHqbTVbrESUgRzRRijJ6gwYghIyISOC277mIhJI_9-ghhD0hlEuZDNBmal3VlsW5rLY4rb13oakr209L0-Y7F3BZ4fV4hU1l8aJpy9wc8PRott3mu2x32OBlcCdbR-vSHF1wOJ3PH9FdYQ7BPV3rEG0-3r_Sz2i2mEzT8SzKGYc2AsUzygWwnBUMQDHLi9gmSZyxTDkCIiOWUyNklmWU5YKq2EiXW-oYpyRmbIheL3cbX_-eXGj1vj75qnupKSRccNZFOgouVO7rELwrdOPLo_FnDUT39nRvT_f29NVel3m5ZErn3D8vGXDOFfsDPc5pkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174543296</pqid></control><display><type>article</type><title>Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN</title><source>IEEE Electronic Library (IEL)</source><creator>Hughes, Lloyd H. ; Schmitt, Michael ; Mou, Lichao ; Wang, Yuanyuan ; Zhu, Xiao Xiang</creator><creatorcontrib>Hughes, Lloyd H. ; Schmitt, Michael ; Mou, Lichao ; Wang, Yuanyuan ; Zhu, Xiao Xiang</creatorcontrib><description>In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated data set that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently coregistered 3-D point clouds. The satellite images, from which the patches comprising our data set are extracted, show a complex urban scene containing many elevated objects (i.e., buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development toward a generalized multisensor key-point matching procedure.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2799232</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive optics ; Artificial neural networks ; Convolutional neural networks (CNNs) ; data fusion ; deep learning ; deep matching ; Entropy ; image matching ; Image reconstruction ; Imagery ; Neural networks ; Object recognition ; Optical distortion ; Optical fiber networks ; optical imagery ; Optical imaging ; Optical interferometry ; Optical sensors ; Patches (structures) ; Radar ; Radar imaging ; Remote sensing ; SAR (radar) ; Satellite imagery ; Satellites ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Three dimensional models</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-05, Vol.15 (5), p.784-788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-194b24513c3f31193d4f6d776b3b9e015b0d42a58bbb23c5296a8ecd2e3420633</citedby><cites>FETCH-LOGICAL-c341t-194b24513c3f31193d4f6d776b3b9e015b0d42a58bbb23c5296a8ecd2e3420633</cites><orcidid>0000-0003-0293-4491 ; 0000-0002-0575-2362 ; 0000-0002-0586-9413 ; 0000-0001-5530-3613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8314449$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Hughes, Lloyd H.</creatorcontrib><creatorcontrib>Schmitt, Michael</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><title>Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated data set that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently coregistered 3-D point clouds. The satellite images, from which the patches comprising our data set are extracted, show a complex urban scene containing many elevated objects (i.e., buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development toward a generalized multisensor key-point matching procedure.</description><subject>Adaptive optics</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>data fusion</subject><subject>deep learning</subject><subject>deep matching</subject><subject>Entropy</subject><subject>image matching</subject><subject>Image reconstruction</subject><subject>Imagery</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Optical distortion</subject><subject>Optical fiber networks</subject><subject>optical imagery</subject><subject>Optical imaging</subject><subject>Optical interferometry</subject><subject>Optical sensors</subject><subject>Patches (structures)</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Three dimensional models</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1rwkAQhpfSQq3tDyi9LPQcu7Mfye5RQmsFUdFKe1s22Y1GNEl348F_3wSlp5lhnncGHoSegYwAiHqbTVbrESUgRzRRijJ6gwYghIyISOC277mIhJI_9-ghhD0hlEuZDNBmal3VlsW5rLY4rb13oakr209L0-Y7F3BZ4fV4hU1l8aJpy9wc8PRott3mu2x32OBlcCdbR-vSHF1wOJ3PH9FdYQ7BPV3rEG0-3r_Sz2i2mEzT8SzKGYc2AsUzygWwnBUMQDHLi9gmSZyxTDkCIiOWUyNklmWU5YKq2EiXW-oYpyRmbIheL3cbX_-eXGj1vj75qnupKSRccNZFOgouVO7rELwrdOPLo_FnDUT39nRvT_f29NVel3m5ZErn3D8vGXDOFfsDPc5pkA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Hughes, Lloyd H.</creator><creator>Schmitt, Michael</creator><creator>Mou, Lichao</creator><creator>Wang, Yuanyuan</creator><creator>Zhu, Xiao Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0293-4491</orcidid><orcidid>https://orcid.org/0000-0002-0575-2362</orcidid><orcidid>https://orcid.org/0000-0002-0586-9413</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid></search><sort><creationdate>20180501</creationdate><title>Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN</title><author>Hughes, Lloyd H. ; Schmitt, Michael ; Mou, Lichao ; Wang, Yuanyuan ; Zhu, Xiao Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-194b24513c3f31193d4f6d776b3b9e015b0d42a58bbb23c5296a8ecd2e3420633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive optics</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>data fusion</topic><topic>deep learning</topic><topic>deep matching</topic><topic>Entropy</topic><topic>image matching</topic><topic>Image reconstruction</topic><topic>Imagery</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Optical distortion</topic><topic>Optical fiber networks</topic><topic>optical imagery</topic><topic>Optical imaging</topic><topic>Optical interferometry</topic><topic>Optical sensors</topic><topic>Patches (structures)</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, Lloyd H.</creatorcontrib><creatorcontrib>Schmitt, Michael</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, Lloyd H.</au><au>Schmitt, Michael</au><au>Mou, Lichao</au><au>Wang, Yuanyuan</au><au>Zhu, Xiao Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>15</volume><issue>5</issue><spage>784</spage><epage>788</epage><pages>784-788</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated data set that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently coregistered 3-D point clouds. The satellite images, from which the patches comprising our data set are extracted, show a complex urban scene containing many elevated objects (i.e., buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development toward a generalized multisensor key-point matching procedure.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2799232</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0293-4491</orcidid><orcidid>https://orcid.org/0000-0002-0575-2362</orcidid><orcidid>https://orcid.org/0000-0002-0586-9413</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-05, Vol.15 (5), p.784-788 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2174543296 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optics Artificial neural networks Convolutional neural networks (CNNs) data fusion deep learning deep matching Entropy image matching Image reconstruction Imagery Neural networks Object recognition Optical distortion Optical fiber networks optical imagery Optical imaging Optical interferometry Optical sensors Patches (structures) Radar Radar imaging Remote sensing SAR (radar) Satellite imagery Satellites Synthetic aperture radar synthetic aperture radar (SAR) Three dimensional models |
title | Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Corresponding%20Patches%20in%20SAR%20and%20Optical%20Images%20With%20a%20Pseudo-Siamese%20CNN&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Hughes,%20Lloyd%20H.&rft.date=2018-05-01&rft.volume=15&rft.issue=5&rft.spage=784&rft.epage=788&rft.pages=784-788&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2799232&rft_dat=%3Cproquest_cross%3E2174543296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174543296&rft_id=info:pmid/&rft_ieee_id=8314449&rfr_iscdi=true |