Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points

In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2018-04, Vol.28 (4), p.892-905
Hauptverfasser: Dimitropoulos, Kosmas, Barmpoutis, Panagiotis, Kitsikidis, Alexandros, Grammalidis, Nikos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 4
container_start_page 892
container_title IEEE transactions on circuits and systems for video technology
container_volume 28
creator Dimitropoulos, Kosmas
Barmpoutis, Panagiotis
Kitsikidis, Alexandros
Grammalidis, Nikos
description In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.
doi_str_mv 10.1109/TCSVT.2016.2631719
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174538672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7752809</ieee_id><sourcerecordid>2174538672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKd_QG8KXnfmTZqPXkqdmzBRsPNOQtomI6MfM-kG_ntbN7x6D4fzHF4OQreAZwA4fcizj898RjDwGeEUBKRnaAKMyZgQzM4HjRnEkgC7RFchbDGGRCZigr6yWofgrCt177o26mz0uq97V7nGtGFwdB3lg47nh64-uHYTPeleR-swyqULfbfxugkjt_BDU6Pb1uk2eu9c24drdGF1HczN6U7R-nmeZ8t49bZ4yR5XcUlS1se24JYRjGVZAOdaa8IMGKC6ogWtBE-0KXFaUSsF8NEueWlBFqKgtKJM0im6P_bufPe9N6FX227vh9-DIiASRiUXZEiRY6r0XQjeWLXzrtH-RwFW44zqb0Y1zqhOMw7Q3RFyxph_QAhGJE7pL3Zzb_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174538672</pqid></control><display><type>article</type><title>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</title><source>IEEE Electronic Library (IEL)</source><creator>Dimitropoulos, Kosmas ; Barmpoutis, Panagiotis ; Kitsikidis, Alexandros ; Grammalidis, Nikos</creator><creatorcontrib>Dimitropoulos, Kosmas ; Barmpoutis, Panagiotis ; Kitsikidis, Alexandros ; Grammalidis, Nikos</creatorcontrib><description>In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2631719</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autoregressive processes ; Computational modeling ; Data models ; Domains ; Evolution ; Grassmann geometry ; Hidden Markov models ; higher order decomposition ; Histograms ; Human activity recognition ; Human motion ; Kernel ; linear dynamical systems (LDSs) ; Manifolds ; Manifolds (mathematics) ; multidimensional signal processing ; Signal classification ; Surveillance systems ; Tensile stress ; Tensors ; Texture recognition</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2018-04, Vol.28 (4), p.892-905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</citedby><cites>FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</cites><orcidid>0000-0001-8465-6258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7752809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7752809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dimitropoulos, Kosmas</creatorcontrib><creatorcontrib>Barmpoutis, Panagiotis</creatorcontrib><creatorcontrib>Kitsikidis, Alexandros</creatorcontrib><creatorcontrib>Grammalidis, Nikos</creatorcontrib><title>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.</description><subject>Autoregressive processes</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Domains</subject><subject>Evolution</subject><subject>Grassmann geometry</subject><subject>Hidden Markov models</subject><subject>higher order decomposition</subject><subject>Histograms</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Kernel</subject><subject>linear dynamical systems (LDSs)</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>multidimensional signal processing</subject><subject>Signal classification</subject><subject>Surveillance systems</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Texture recognition</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKd_QG8KXnfmTZqPXkqdmzBRsPNOQtomI6MfM-kG_ntbN7x6D4fzHF4OQreAZwA4fcizj898RjDwGeEUBKRnaAKMyZgQzM4HjRnEkgC7RFchbDGGRCZigr6yWofgrCt177o26mz0uq97V7nGtGFwdB3lg47nh64-uHYTPeleR-swyqULfbfxugkjt_BDU6Pb1uk2eu9c24drdGF1HczN6U7R-nmeZ8t49bZ4yR5XcUlS1se24JYRjGVZAOdaa8IMGKC6ogWtBE-0KXFaUSsF8NEueWlBFqKgtKJM0im6P_bufPe9N6FX227vh9-DIiASRiUXZEiRY6r0XQjeWLXzrtH-RwFW44zqb0Y1zqhOMw7Q3RFyxph_QAhGJE7pL3Zzb_w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dimitropoulos, Kosmas</creator><creator>Barmpoutis, Panagiotis</creator><creator>Kitsikidis, Alexandros</creator><creator>Grammalidis, Nikos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8465-6258</orcidid></search><sort><creationdate>20180401</creationdate><title>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</title><author>Dimitropoulos, Kosmas ; Barmpoutis, Panagiotis ; Kitsikidis, Alexandros ; Grammalidis, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoregressive processes</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Domains</topic><topic>Evolution</topic><topic>Grassmann geometry</topic><topic>Hidden Markov models</topic><topic>higher order decomposition</topic><topic>Histograms</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Kernel</topic><topic>linear dynamical systems (LDSs)</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>multidimensional signal processing</topic><topic>Signal classification</topic><topic>Surveillance systems</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Texture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitropoulos, Kosmas</creatorcontrib><creatorcontrib>Barmpoutis, Panagiotis</creatorcontrib><creatorcontrib>Kitsikidis, Alexandros</creatorcontrib><creatorcontrib>Grammalidis, Nikos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimitropoulos, Kosmas</au><au>Barmpoutis, Panagiotis</au><au>Kitsikidis, Alexandros</au><au>Grammalidis, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>892</spage><epage>905</epage><pages>892-905</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2631719</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8465-6258</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2018-04, Vol.28 (4), p.892-905
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2174538672
source IEEE Electronic Library (IEL)
subjects Autoregressive processes
Computational modeling
Data models
Domains
Evolution
Grassmann geometry
Hidden Markov models
higher order decomposition
Histograms
Human activity recognition
Human motion
Kernel
linear dynamical systems (LDSs)
Manifolds
Manifolds (mathematics)
multidimensional signal processing
Signal classification
Surveillance systems
Tensile stress
Tensors
Texture recognition
title Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Multidimensional%20Time-Evolving%20Data%20Using%20Histograms%20of%20Grassmannian%20Points&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Dimitropoulos,%20Kosmas&rft.date=2018-04-01&rft.volume=28&rft.issue=4&rft.spage=892&rft.epage=905&rft.pages=892-905&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2631719&rft_dat=%3Cproquest_RIE%3E2174538672%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174538672&rft_id=info:pmid/&rft_ieee_id=7752809&rfr_iscdi=true