Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points
In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2018-04, Vol.28 (4), p.892-905 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | 4 |
container_start_page | 892 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 28 |
creator | Dimitropoulos, Kosmas Barmpoutis, Panagiotis Kitsikidis, Alexandros Grammalidis, Nikos |
description | In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential. |
doi_str_mv | 10.1109/TCSVT.2016.2631719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174538672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7752809</ieee_id><sourcerecordid>2174538672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKd_QG8KXnfmTZqPXkqdmzBRsPNOQtomI6MfM-kG_ntbN7x6D4fzHF4OQreAZwA4fcizj898RjDwGeEUBKRnaAKMyZgQzM4HjRnEkgC7RFchbDGGRCZigr6yWofgrCt177o26mz0uq97V7nGtGFwdB3lg47nh64-uHYTPeleR-swyqULfbfxugkjt_BDU6Pb1uk2eu9c24drdGF1HczN6U7R-nmeZ8t49bZ4yR5XcUlS1se24JYRjGVZAOdaa8IMGKC6ogWtBE-0KXFaUSsF8NEueWlBFqKgtKJM0im6P_bufPe9N6FX227vh9-DIiASRiUXZEiRY6r0XQjeWLXzrtH-RwFW44zqb0Y1zqhOMw7Q3RFyxph_QAhGJE7pL3Zzb_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174538672</pqid></control><display><type>article</type><title>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</title><source>IEEE Electronic Library (IEL)</source><creator>Dimitropoulos, Kosmas ; Barmpoutis, Panagiotis ; Kitsikidis, Alexandros ; Grammalidis, Nikos</creator><creatorcontrib>Dimitropoulos, Kosmas ; Barmpoutis, Panagiotis ; Kitsikidis, Alexandros ; Grammalidis, Nikos</creatorcontrib><description>In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2631719</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autoregressive processes ; Computational modeling ; Data models ; Domains ; Evolution ; Grassmann geometry ; Hidden Markov models ; higher order decomposition ; Histograms ; Human activity recognition ; Human motion ; Kernel ; linear dynamical systems (LDSs) ; Manifolds ; Manifolds (mathematics) ; multidimensional signal processing ; Signal classification ; Surveillance systems ; Tensile stress ; Tensors ; Texture recognition</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2018-04, Vol.28 (4), p.892-905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</citedby><cites>FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</cites><orcidid>0000-0001-8465-6258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7752809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7752809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dimitropoulos, Kosmas</creatorcontrib><creatorcontrib>Barmpoutis, Panagiotis</creatorcontrib><creatorcontrib>Kitsikidis, Alexandros</creatorcontrib><creatorcontrib>Grammalidis, Nikos</creatorcontrib><title>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.</description><subject>Autoregressive processes</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Domains</subject><subject>Evolution</subject><subject>Grassmann geometry</subject><subject>Hidden Markov models</subject><subject>higher order decomposition</subject><subject>Histograms</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Kernel</subject><subject>linear dynamical systems (LDSs)</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>multidimensional signal processing</subject><subject>Signal classification</subject><subject>Surveillance systems</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Texture recognition</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKd_QG8KXnfmTZqPXkqdmzBRsPNOQtomI6MfM-kG_ntbN7x6D4fzHF4OQreAZwA4fcizj898RjDwGeEUBKRnaAKMyZgQzM4HjRnEkgC7RFchbDGGRCZigr6yWofgrCt177o26mz0uq97V7nGtGFwdB3lg47nh64-uHYTPeleR-swyqULfbfxugkjt_BDU6Pb1uk2eu9c24drdGF1HczN6U7R-nmeZ8t49bZ4yR5XcUlS1se24JYRjGVZAOdaa8IMGKC6ogWtBE-0KXFaUSsF8NEueWlBFqKgtKJM0im6P_bufPe9N6FX227vh9-DIiASRiUXZEiRY6r0XQjeWLXzrtH-RwFW44zqb0Y1zqhOMw7Q3RFyxph_QAhGJE7pL3Zzb_w</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dimitropoulos, Kosmas</creator><creator>Barmpoutis, Panagiotis</creator><creator>Kitsikidis, Alexandros</creator><creator>Grammalidis, Nikos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8465-6258</orcidid></search><sort><creationdate>20180401</creationdate><title>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</title><author>Dimitropoulos, Kosmas ; Barmpoutis, Panagiotis ; Kitsikidis, Alexandros ; Grammalidis, Nikos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-fb6f52008cb166aaa25e1e13ad3b3d764aec09d3f871613adc6cf18b7b33d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoregressive processes</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Domains</topic><topic>Evolution</topic><topic>Grassmann geometry</topic><topic>Hidden Markov models</topic><topic>higher order decomposition</topic><topic>Histograms</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Kernel</topic><topic>linear dynamical systems (LDSs)</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>multidimensional signal processing</topic><topic>Signal classification</topic><topic>Surveillance systems</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Texture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitropoulos, Kosmas</creatorcontrib><creatorcontrib>Barmpoutis, Panagiotis</creatorcontrib><creatorcontrib>Kitsikidis, Alexandros</creatorcontrib><creatorcontrib>Grammalidis, Nikos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimitropoulos, Kosmas</au><au>Barmpoutis, Panagiotis</au><au>Kitsikidis, Alexandros</au><au>Grammalidis, Nikos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>892</spage><epage>905</epage><pages>892-905</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we address the problem of classifying multidimensional time-evolving data in dynamic scenes. To take advantage of the correlation between the different channels of data, we introduce a generalized form of a stabilized higher order linear dynamical system (sh-LDS) and we represent the multidimensional signal as a third-order tensor. In addition, we show that the parameters of the proposed model lie on a Grassmann manifold and we attempt to address the classification problem through study of the geometric properties of the sh-LDS's space. Moreover, to tackle the problem of nonlinearity of the observation data, we represent each multidimensional signal as a cloud of points on the Grassmann manifold and we create a codebook by identifying the most representative points. Finally, each multidimensional signal is classified by applying a bag-of-systems approach having first modeled the variation of the class of each codeword on its tangent space instead of the sh-LDS's space. The proposed methodology is evaluated in three different application domains, namely, video-based surveillance systems, dynamic texture categorization, and human action recognition, showing its great potential.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2631719</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8465-6258</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2018-04, Vol.28 (4), p.892-905 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2174538672 |
source | IEEE Electronic Library (IEL) |
subjects | Autoregressive processes Computational modeling Data models Domains Evolution Grassmann geometry Hidden Markov models higher order decomposition Histograms Human activity recognition Human motion Kernel linear dynamical systems (LDSs) Manifolds Manifolds (mathematics) multidimensional signal processing Signal classification Surveillance systems Tensile stress Tensors Texture recognition |
title | Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Multidimensional%20Time-Evolving%20Data%20Using%20Histograms%20of%20Grassmannian%20Points&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Dimitropoulos,%20Kosmas&rft.date=2018-04-01&rft.volume=28&rft.issue=4&rft.spage=892&rft.epage=905&rft.pages=892-905&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2631719&rft_dat=%3Cproquest_RIE%3E2174538672%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174538672&rft_id=info:pmid/&rft_ieee_id=7752809&rfr_iscdi=true |