Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data

This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-03, Vol.56 (3), p.1520-1532
Hauptverfasser: Jung, Jungkyo, Yun, Sang-Ho, Kim, Duk-jin, Lavalle, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1532
container_issue 3
container_start_page 1520
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Jung, Jungkyo
Yun, Sang-Ho
Kim, Duk-jin
Lavalle, Marco
description This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.
doi_str_mv 10.1109/TGRS.2017.2764748
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174512315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8124198</ieee_id><sourcerecordid>2174512315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</originalsourceid><addsrcrecordid>eNo9kE9Pg0AQxTdGE2v1Axgvm3imMsvCwrG2Wpu00fTPmQww21KBxYUe_PZCaDxNJvPezLwfY4_gTgDc6GW32GwnwgU1ESqQSoZXbAS-HzpuIOU1G7kQBY4II3HL7prm5LogfVAj9j3HEg_krLGu8-rAp8XB2Lw9lvwVG8q4qfjMHMlSlRJfm4wKvm964fpctHlLZW0sFvzLFGjzklqbp86yaslqsmbo-Xa64XNs8Z7daCwaerjUMdu_v-1mH87qc7GcTVdOKiKvdRC17h4FL1OE2vMSCNIkjKQIIVCY-kC-1JFOVBomoDwp0EedZdjNM51E5I3Z87C3tubnTE0bn8zZVt3JWIDqcgsP_E4Fgyq1pmks6bjuEqD9jcGNe6ZxzzTumcYXpp3nafDkRPSvD0FIiELvD0DNdEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174512315</pqid></control><display><type>article</type><title>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jung, Jungkyo ; Yun, Sang-Ho ; Kim, Duk-jin ; Lavalle, Marco</creator><creatorcontrib>Jung, Jungkyo ; Yun, Sang-Ho ; Kim, Duk-jin ; Lavalle, Marco</creatorcontrib><description>This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2764748</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coherence ; Coherence model ; Damage assessment ; damage mapping ; Data ; Data acquisition ; Data models ; Decorrelation ; Detection ; Dielectrics ; Disasters ; False alarms ; Fire damage ; Fires ; Interferometric synthetic aperture radar ; Interferometry ; Lakes ; Mapping ; Mathematical models ; Natural disasters ; Optimization ; Parameter estimation ; Parameters ; Performance evaluation ; Pixels ; Probability density functions ; Probability theory ; Radar imaging ; Radar polarimetry ; SAR (radar) ; Solid modeling ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Temporal variations</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-03, Vol.56 (3), p.1520-1532</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</citedby><cites>FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</cites><orcidid>0000-0001-8147-7641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8124198$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Jung, Jungkyo</creatorcontrib><creatorcontrib>Yun, Sang-Ho</creatorcontrib><creatorcontrib>Kim, Duk-jin</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><title>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Coherence model</subject><subject>Damage assessment</subject><subject>damage mapping</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Decorrelation</subject><subject>Detection</subject><subject>Dielectrics</subject><subject>Disasters</subject><subject>False alarms</subject><subject>Fire damage</subject><subject>Fires</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>Lakes</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Natural disasters</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Pixels</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>SAR (radar)</subject><subject>Solid modeling</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Temporal variations</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9Pg0AQxTdGE2v1Axgvm3imMsvCwrG2Wpu00fTPmQww21KBxYUe_PZCaDxNJvPezLwfY4_gTgDc6GW32GwnwgU1ESqQSoZXbAS-HzpuIOU1G7kQBY4II3HL7prm5LogfVAj9j3HEg_krLGu8-rAp8XB2Lw9lvwVG8q4qfjMHMlSlRJfm4wKvm964fpctHlLZW0sFvzLFGjzklqbp86yaslqsmbo-Xa64XNs8Z7daCwaerjUMdu_v-1mH87qc7GcTVdOKiKvdRC17h4FL1OE2vMSCNIkjKQIIVCY-kC-1JFOVBomoDwp0EedZdjNM51E5I3Z87C3tubnTE0bn8zZVt3JWIDqcgsP_E4Fgyq1pmks6bjuEqD9jcGNe6ZxzzTumcYXpp3nafDkRPSvD0FIiELvD0DNdEc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jung, Jungkyo</creator><creator>Yun, Sang-Ho</creator><creator>Kim, Duk-jin</creator><creator>Lavalle, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8147-7641</orcidid></search><sort><creationdate>20180301</creationdate><title>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</title><author>Jung, Jungkyo ; Yun, Sang-Ho ; Kim, Duk-jin ; Lavalle, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Coherence model</topic><topic>Damage assessment</topic><topic>damage mapping</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Decorrelation</topic><topic>Detection</topic><topic>Dielectrics</topic><topic>Disasters</topic><topic>False alarms</topic><topic>Fire damage</topic><topic>Fires</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>Lakes</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Natural disasters</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Pixels</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>SAR (radar)</topic><topic>Solid modeling</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jungkyo</creatorcontrib><creatorcontrib>Yun, Sang-Ho</creatorcontrib><creatorcontrib>Kim, Duk-jin</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jungkyo</au><au>Yun, Sang-Ho</au><au>Kim, Duk-jin</au><au>Lavalle, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>56</volume><issue>3</issue><spage>1520</spage><epage>1532</epage><pages>1520-1532</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2764748</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8147-7641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-03, Vol.56 (3), p.1520-1532
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2174512315
source IEEE Electronic Library (IEL)
subjects Algorithms
Coherence
Coherence model
Damage assessment
damage mapping
Data
Data acquisition
Data models
Decorrelation
Detection
Dielectrics
Disasters
False alarms
Fire damage
Fires
Interferometric synthetic aperture radar
Interferometry
Lakes
Mapping
Mathematical models
Natural disasters
Optimization
Parameter estimation
Parameters
Performance evaluation
Pixels
Probability density functions
Probability theory
Radar imaging
Radar polarimetry
SAR (radar)
Solid modeling
Synthetic aperture radar
synthetic aperture radar (SAR)
Temporal variations
title Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage-Mapping%20Algorithm%20Based%20on%20Coherence%20Model%20Using%20Multitemporal%20Polarimetric-Interferometric%20SAR%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jung,%20Jungkyo&rft.date=2018-03-01&rft.volume=56&rft.issue=3&rft.spage=1520&rft.epage=1532&rft.pages=1520-1532&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2764748&rft_dat=%3Cproquest_ieee_%3E2174512315%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174512315&rft_id=info:pmid/&rft_ieee_id=8124198&rfr_iscdi=true