Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data
This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation source...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-03, Vol.56 (3), p.1520-1532 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1532 |
---|---|
container_issue | 3 |
container_start_page | 1520 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Jung, Jungkyo Yun, Sang-Ho Kim, Duk-jin Lavalle, Marco |
description | This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone. |
doi_str_mv | 10.1109/TGRS.2017.2764748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174512315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8124198</ieee_id><sourcerecordid>2174512315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</originalsourceid><addsrcrecordid>eNo9kE9Pg0AQxTdGE2v1Axgvm3imMsvCwrG2Wpu00fTPmQww21KBxYUe_PZCaDxNJvPezLwfY4_gTgDc6GW32GwnwgU1ESqQSoZXbAS-HzpuIOU1G7kQBY4II3HL7prm5LogfVAj9j3HEg_krLGu8-rAp8XB2Lw9lvwVG8q4qfjMHMlSlRJfm4wKvm964fpctHlLZW0sFvzLFGjzklqbp86yaslqsmbo-Xa64XNs8Z7daCwaerjUMdu_v-1mH87qc7GcTVdOKiKvdRC17h4FL1OE2vMSCNIkjKQIIVCY-kC-1JFOVBomoDwp0EedZdjNM51E5I3Z87C3tubnTE0bn8zZVt3JWIDqcgsP_E4Fgyq1pmks6bjuEqD9jcGNe6ZxzzTumcYXpp3nafDkRPSvD0FIiELvD0DNdEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174512315</pqid></control><display><type>article</type><title>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</title><source>IEEE Electronic Library (IEL)</source><creator>Jung, Jungkyo ; Yun, Sang-Ho ; Kim, Duk-jin ; Lavalle, Marco</creator><creatorcontrib>Jung, Jungkyo ; Yun, Sang-Ho ; Kim, Duk-jin ; Lavalle, Marco</creatorcontrib><description>This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2764748</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Coherence ; Coherence model ; Damage assessment ; damage mapping ; Data ; Data acquisition ; Data models ; Decorrelation ; Detection ; Dielectrics ; Disasters ; False alarms ; Fire damage ; Fires ; Interferometric synthetic aperture radar ; Interferometry ; Lakes ; Mapping ; Mathematical models ; Natural disasters ; Optimization ; Parameter estimation ; Parameters ; Performance evaluation ; Pixels ; Probability density functions ; Probability theory ; Radar imaging ; Radar polarimetry ; SAR (radar) ; Solid modeling ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Temporal variations</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-03, Vol.56 (3), p.1520-1532</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</citedby><cites>FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</cites><orcidid>0000-0001-8147-7641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8124198$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Jung, Jungkyo</creatorcontrib><creatorcontrib>Yun, Sang-Ho</creatorcontrib><creatorcontrib>Kim, Duk-jin</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><title>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Coherence model</subject><subject>Damage assessment</subject><subject>damage mapping</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Decorrelation</subject><subject>Detection</subject><subject>Dielectrics</subject><subject>Disasters</subject><subject>False alarms</subject><subject>Fire damage</subject><subject>Fires</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>Lakes</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Natural disasters</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Pixels</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>SAR (radar)</subject><subject>Solid modeling</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Temporal variations</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9Pg0AQxTdGE2v1Axgvm3imMsvCwrG2Wpu00fTPmQww21KBxYUe_PZCaDxNJvPezLwfY4_gTgDc6GW32GwnwgU1ESqQSoZXbAS-HzpuIOU1G7kQBY4II3HL7prm5LogfVAj9j3HEg_krLGu8-rAp8XB2Lw9lvwVG8q4qfjMHMlSlRJfm4wKvm964fpctHlLZW0sFvzLFGjzklqbp86yaslqsmbo-Xa64XNs8Z7daCwaerjUMdu_v-1mH87qc7GcTVdOKiKvdRC17h4FL1OE2vMSCNIkjKQIIVCY-kC-1JFOVBomoDwp0EedZdjNM51E5I3Z87C3tubnTE0bn8zZVt3JWIDqcgsP_E4Fgyq1pmks6bjuEqD9jcGNe6ZxzzTumcYXpp3nafDkRPSvD0FIiELvD0DNdEc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jung, Jungkyo</creator><creator>Yun, Sang-Ho</creator><creator>Kim, Duk-jin</creator><creator>Lavalle, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8147-7641</orcidid></search><sort><creationdate>20180301</creationdate><title>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</title><author>Jung, Jungkyo ; Yun, Sang-Ho ; Kim, Duk-jin ; Lavalle, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aaff89213d7eaf33b16cb89428167ac51e54f9fb7c8b17342a5afdda281dfb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Coherence model</topic><topic>Damage assessment</topic><topic>damage mapping</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Decorrelation</topic><topic>Detection</topic><topic>Dielectrics</topic><topic>Disasters</topic><topic>False alarms</topic><topic>Fire damage</topic><topic>Fires</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>Lakes</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Natural disasters</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Pixels</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>SAR (radar)</topic><topic>Solid modeling</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Temporal variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jungkyo</creatorcontrib><creatorcontrib>Yun, Sang-Ho</creatorcontrib><creatorcontrib>Kim, Duk-jin</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jungkyo</au><au>Yun, Sang-Ho</au><au>Kim, Duk-jin</au><au>Lavalle, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>56</volume><issue>3</issue><spage>1520</spage><epage>1532</epage><pages>1520-1532</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a new damage-mapping algorithm based on coherence images estimated from multitemporal polarimetric-interferometric synthetic aperture radar (SAR) data. The interferometric coherence has been restricted in the conventional damage-mapping approaches because the decorrelation sources are too complicated to interpret accurately and temporal decorrelation effects caused by slowly occurring natural changes and disaster events are often coupled together. To overcome these limitations, we formulate a coherence model that accounts for temporal decorrelation in two simplified layers, ground and volume layers, for long-temporal repeat-pass scenarios with zero spatial baseline. The model parameters include: 1) ground-to-volume ratio, a factor to determine the relative scattering contribution of ground and volume layers; 2) temporally correlated change, which captures the exponentially decaying behavior of coherence with time; and 3) temporally uncorrelated change, which is associated with random temporal changes. We estimate the model parameters in three steps: coherence optimization, interferometric pair-invariant parameter estimation, and interferometric pair-variant parameter estimation. To isolate the effects of disaster events from background natural changes, we calculate the probability density functions of historical change pixel by pixel and produce a probability map of damage. We tested the algorithm with uninhabited aerial vehicle data acquired from 2009 to 2015 for mapping the area damaged by the 2015 Lake Fire in California. Based on performance evaluation using receiver operating characteristic curves for optimized coherences and averaged probability maps, the proposed method reduced the false alarm from 0.25 to 0.07 when the probability of detection was 0.85 compared to coherence products alone.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2764748</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8147-7641</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-03, Vol.56 (3), p.1520-1532 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2174512315 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Coherence Coherence model Damage assessment damage mapping Data Data acquisition Data models Decorrelation Detection Dielectrics Disasters False alarms Fire damage Fires Interferometric synthetic aperture radar Interferometry Lakes Mapping Mathematical models Natural disasters Optimization Parameter estimation Parameters Performance evaluation Pixels Probability density functions Probability theory Radar imaging Radar polarimetry SAR (radar) Solid modeling Synthetic aperture radar synthetic aperture radar (SAR) Temporal variations |
title | Damage-Mapping Algorithm Based on Coherence Model Using Multitemporal Polarimetric-Interferometric SAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage-Mapping%20Algorithm%20Based%20on%20Coherence%20Model%20Using%20Multitemporal%20Polarimetric-Interferometric%20SAR%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jung,%20Jungkyo&rft.date=2018-03-01&rft.volume=56&rft.issue=3&rft.spage=1520&rft.epage=1532&rft.pages=1520-1532&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2764748&rft_dat=%3Cproquest_ieee_%3E2174512315%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174512315&rft_id=info:pmid/&rft_ieee_id=8124198&rfr_iscdi=true |