Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification

In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (1), p.117-126
Hauptverfasser: Liu, Qingshan, Hang, Renlong, Song, Huihui, Li, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 1
container_start_page 117
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Liu, Qingshan
Hang, Renlong
Song, Huihui
Li, Zhi
description In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods.
doi_str_mv 10.1109/TGRS.2017.2743243
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174511998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8036413</ieee_id><sourcerecordid>2174511998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-fdd465c00c9e61561881a30c86eaf24af7a5f25d86ba971c09e9c3ceb5d525173</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxCLJeYUP38lHlGhLVIRUlsWlsh1XoqrNCl2MvDvSdSK6S3n3qd7CLkHNgFg5mkzX60nnEE64akUXIoLMgKlsoRpKS_JiIHRCc8MvyY3Me4ZA6kgHZGvJdpQ-3pH37uq9dHZCukL4pHO0LZdwEjLJtCF330nK4xN1bW-qenatlhVvkX6drA7pGuHNdJpZWP0pXd2gG7JVWmriHfnOyafs9fNdJEsP-Zv0-dl4iRL26QsCqmVY8wZ1KA0ZBlYwVym0ZZc2jK1quSqyPTWmhQcM2iccLhVheL9BjEmj6feY2h-Ooxtvm-6UPcvcw5pPxOMyXoKTpQLTYwBy_wY_MGG3xxYPijMB4X5oDA_K-wzD6eMR8R_PmNCSxDiDzHJbVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174511998</pqid></control><display><type>article</type><title>Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Qingshan ; Hang, Renlong ; Song, Huihui ; Li, Zhi</creator><creatorcontrib>Liu, Qingshan ; Hang, Renlong ; Song, Huihui ; Li, Zhi</creatorcontrib><description>In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2743243</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Deep convolutional neural networks (DCNNs) ; Feature extraction ; feature fusion ; High resolution ; Histograms ; Image classification ; Image resolution ; Learning ; Learning systems ; multiple kernel learning (MKL) ; Multiscale analysis ; multiscale deep features ; Nets ; Neural networks ; Parameters ; Resolution ; satellite image classification ; Satellite imagery ; Satellites ; spatial pyramid pooling ; Spatial resolution ; State of the art ; Teaching methods ; Training ; Visualization ; Warp</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.117-126</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-fdd465c00c9e61561881a30c86eaf24af7a5f25d86ba971c09e9c3ceb5d525173</citedby><cites>FETCH-LOGICAL-c407t-fdd465c00c9e61561881a30c86eaf24af7a5f25d86ba971c09e9c3ceb5d525173</cites><orcidid>0000-0002-5512-6984 ; 0000-0001-6046-3689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8036413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8036413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Qingshan</creatorcontrib><creatorcontrib>Hang, Renlong</creatorcontrib><creatorcontrib>Song, Huihui</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><title>Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Deep convolutional neural networks (DCNNs)</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>High resolution</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>Learning</subject><subject>Learning systems</subject><subject>multiple kernel learning (MKL)</subject><subject>Multiscale analysis</subject><subject>multiscale deep features</subject><subject>Nets</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Resolution</subject><subject>satellite image classification</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>spatial pyramid pooling</subject><subject>Spatial resolution</subject><subject>State of the art</subject><subject>Teaching methods</subject><subject>Training</subject><subject>Visualization</subject><subject>Warp</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAURS0EEqXwAxCLJeYUP38lHlGhLVIRUlsWlsh1XoqrNCl2MvDvSdSK6S3n3qd7CLkHNgFg5mkzX60nnEE64akUXIoLMgKlsoRpKS_JiIHRCc8MvyY3Me4ZA6kgHZGvJdpQ-3pH37uq9dHZCukL4pHO0LZdwEjLJtCF330nK4xN1bW-qenatlhVvkX6drA7pGuHNdJpZWP0pXd2gG7JVWmriHfnOyafs9fNdJEsP-Zv0-dl4iRL26QsCqmVY8wZ1KA0ZBlYwVym0ZZc2jK1quSqyPTWmhQcM2iccLhVheL9BjEmj6feY2h-Ooxtvm-6UPcvcw5pPxOMyXoKTpQLTYwBy_wY_MGG3xxYPijMB4X5oDA_K-wzD6eMR8R_PmNCSxDiDzHJbVQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Liu, Qingshan</creator><creator>Hang, Renlong</creator><creator>Song, Huihui</creator><creator>Li, Zhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5512-6984</orcidid><orcidid>https://orcid.org/0000-0001-6046-3689</orcidid></search><sort><creationdate>201801</creationdate><title>Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification</title><author>Liu, Qingshan ; Hang, Renlong ; Song, Huihui ; Li, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-fdd465c00c9e61561881a30c86eaf24af7a5f25d86ba971c09e9c3ceb5d525173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Deep convolutional neural networks (DCNNs)</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>High resolution</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>Learning</topic><topic>Learning systems</topic><topic>multiple kernel learning (MKL)</topic><topic>Multiscale analysis</topic><topic>multiscale deep features</topic><topic>Nets</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Resolution</topic><topic>satellite image classification</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>spatial pyramid pooling</topic><topic>Spatial resolution</topic><topic>State of the art</topic><topic>Teaching methods</topic><topic>Training</topic><topic>Visualization</topic><topic>Warp</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qingshan</creatorcontrib><creatorcontrib>Hang, Renlong</creatorcontrib><creatorcontrib>Song, Huihui</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Qingshan</au><au>Hang, Renlong</au><au>Song, Huihui</au><au>Li, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>117</spage><epage>126</epage><pages>117-126</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2743243</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5512-6984</orcidid><orcidid>https://orcid.org/0000-0001-6046-3689</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.117-126
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2174511998
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Deep convolutional neural networks (DCNNs)
Feature extraction
feature fusion
High resolution
Histograms
Image classification
Image resolution
Learning
Learning systems
multiple kernel learning (MKL)
Multiscale analysis
multiscale deep features
Nets
Neural networks
Parameters
Resolution
satellite image classification
Satellite imagery
Satellites
spatial pyramid pooling
Spatial resolution
State of the art
Teaching methods
Training
Visualization
Warp
title Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Multiscale%20Deep%20Features%20for%20High-Resolution%20Satellite%20Image%20Scene%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Qingshan&rft.date=2018-01&rft.volume=56&rft.issue=1&rft.spage=117&rft.epage=126&rft.pages=117-126&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2743243&rft_dat=%3Cproquest_RIE%3E2174511998%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174511998&rft_id=info:pmid/&rft_ieee_id=8036413&rfr_iscdi=true