The Kendall and Mallows Kernels for Permutations

We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2018-07, Vol.40 (7), p.1755-1769
Hauptverfasser: Yunlong Jiao, Vert, Jean-Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1769
container_issue 7
container_start_page 1755
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 40
creator Yunlong Jiao
Vert, Jean-Philippe
description We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.
doi_str_mv 10.1109/TPAMI.2017.2719680
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2174510602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8059781</ieee_id><sourcerecordid>2174510602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq0KVAL0D7RStRIXetgwY3v9cYwQkIggOISz5axtZdFmN9jZVv33dUiaA6cZjZ95NX4I-Y4wRgR9s3iZPM3GFFCOqUQtFHwhI9RMl6xi-oSMAAUtlaLqjJyn9AaAvAL2lZxRpRVyECMCi5UvHn3nbNsWtnPFU276PynPYufbVIQ-Fi8-roet3TZ9ly7JabBt8t8O9YK83t8tbqfl_PlhdjuZlzWneltyGWoQNWrlBOWBsSXKoHgdhFQuWO09k1ZYxEo7FRwIDm5JQUCVGVcrdkF-7XNXtjWb2Kxt_Gt625jpZG52M0AqNZXsN83s9Z7dxP598Glr1k2qfdvazvdDMqi5khWjAjJ69Ql964fY5Z8YipJXmE_YBdI9Vcc-pejD8QIEs3NvPtybnXtzcJ-Xfh6ih-Xau-PKf9kZ-LEHGu_98VlBpaVC9g-7LYUM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174510602</pqid></control><display><type>article</type><title>The Kendall and Mallows Kernels for Permutations</title><source>IEEE Electronic Library (IEL)</source><creator>Yunlong Jiao ; Vert, Jean-Philippe</creator><creatorcontrib>Yunlong Jiao ; Vert, Jean-Philippe</creatorcontrib><description>We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2719680</identifier><identifier>PMID: 28981406</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Bioinformatics ; Biomedical materials ; cluster analysis of rank data ; Clustering ; Correlation ; Correlation coefficients ; Data models ; Gene expression ; Kendall tau correlation ; Kernel ; Kernel functions ; Kernel methods ; Machine Learning ; Mallows model ; permutation ; Permutations ; Sorting ; State of the art ; Statistics ; supervised classification of biomedical data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-07, Vol.40 (7), p.1755-1769</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</citedby><cites>FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</cites><orcidid>0000-0001-9510-8441 ; 0000-0002-0776-0550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8059781$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28981406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01279273$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yunlong Jiao</creatorcontrib><creatorcontrib>Vert, Jean-Philippe</creatorcontrib><title>The Kendall and Mallows Kernels for Permutations</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.</description><subject>Analytical models</subject><subject>Bioinformatics</subject><subject>Biomedical materials</subject><subject>cluster analysis of rank data</subject><subject>Clustering</subject><subject>Correlation</subject><subject>Correlation coefficients</subject><subject>Data models</subject><subject>Gene expression</subject><subject>Kendall tau correlation</subject><subject>Kernel</subject><subject>Kernel functions</subject><subject>Kernel methods</subject><subject>Machine Learning</subject><subject>Mallows model</subject><subject>permutation</subject><subject>Permutations</subject><subject>Sorting</subject><subject>State of the art</subject><subject>Statistics</subject><subject>supervised classification of biomedical data</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1PGzEQhq0KVAL0D7RStRIXetgwY3v9cYwQkIggOISz5axtZdFmN9jZVv33dUiaA6cZjZ95NX4I-Y4wRgR9s3iZPM3GFFCOqUQtFHwhI9RMl6xi-oSMAAUtlaLqjJyn9AaAvAL2lZxRpRVyECMCi5UvHn3nbNsWtnPFU276PynPYufbVIQ-Fi8-roet3TZ9ly7JabBt8t8O9YK83t8tbqfl_PlhdjuZlzWneltyGWoQNWrlBOWBsSXKoHgdhFQuWO09k1ZYxEo7FRwIDm5JQUCVGVcrdkF-7XNXtjWb2Kxt_Gt625jpZG52M0AqNZXsN83s9Z7dxP598Glr1k2qfdvazvdDMqi5khWjAjJ69Ql964fY5Z8YipJXmE_YBdI9Vcc-pejD8QIEs3NvPtybnXtzcJ-Xfh6ih-Xau-PKf9kZ-LEHGu_98VlBpaVC9g-7LYUM</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Yunlong Jiao</creator><creator>Vert, Jean-Philippe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9510-8441</orcidid><orcidid>https://orcid.org/0000-0002-0776-0550</orcidid></search><sort><creationdate>20180701</creationdate><title>The Kendall and Mallows Kernels for Permutations</title><author>Yunlong Jiao ; Vert, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>Bioinformatics</topic><topic>Biomedical materials</topic><topic>cluster analysis of rank data</topic><topic>Clustering</topic><topic>Correlation</topic><topic>Correlation coefficients</topic><topic>Data models</topic><topic>Gene expression</topic><topic>Kendall tau correlation</topic><topic>Kernel</topic><topic>Kernel functions</topic><topic>Kernel methods</topic><topic>Machine Learning</topic><topic>Mallows model</topic><topic>permutation</topic><topic>Permutations</topic><topic>Sorting</topic><topic>State of the art</topic><topic>Statistics</topic><topic>supervised classification of biomedical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yunlong Jiao</creatorcontrib><creatorcontrib>Vert, Jean-Philippe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yunlong Jiao</au><au>Vert, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kendall and Mallows Kernels for Permutations</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>40</volume><issue>7</issue><spage>1755</spage><epage>1769</epage><pages>1755-1769</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28981406</pmid><doi>10.1109/TPAMI.2017.2719680</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9510-8441</orcidid><orcidid>https://orcid.org/0000-0002-0776-0550</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2018-07, Vol.40 (7), p.1755-1769
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2174510602
source IEEE Electronic Library (IEL)
subjects Analytical models
Bioinformatics
Biomedical materials
cluster analysis of rank data
Clustering
Correlation
Correlation coefficients
Data models
Gene expression
Kendall tau correlation
Kernel
Kernel functions
Kernel methods
Machine Learning
Mallows model
permutation
Permutations
Sorting
State of the art
Statistics
supervised classification of biomedical data
title The Kendall and Mallows Kernels for Permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kendall%20and%20Mallows%20Kernels%20for%20Permutations&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yunlong%20Jiao&rft.date=2018-07-01&rft.volume=40&rft.issue=7&rft.spage=1755&rft.epage=1769&rft.pages=1755-1769&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2719680&rft_dat=%3Cproquest_pubme%3E2174510602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174510602&rft_id=info:pmid/28981406&rft_ieee_id=8059781&rfr_iscdi=true