The Kendall and Mallows Kernels for Permutations
We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2018-07, Vol.40 (7), p.1755-1769 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1769 |
---|---|
container_issue | 7 |
container_start_page | 1755 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 40 |
creator | Yunlong Jiao Vert, Jean-Philippe |
description | We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications. |
doi_str_mv | 10.1109/TPAMI.2017.2719680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2174510602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8059781</ieee_id><sourcerecordid>2174510602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq0KVAL0D7RStRIXetgwY3v9cYwQkIggOISz5axtZdFmN9jZVv33dUiaA6cZjZ95NX4I-Y4wRgR9s3iZPM3GFFCOqUQtFHwhI9RMl6xi-oSMAAUtlaLqjJyn9AaAvAL2lZxRpRVyECMCi5UvHn3nbNsWtnPFU276PynPYufbVIQ-Fi8-roet3TZ9ly7JabBt8t8O9YK83t8tbqfl_PlhdjuZlzWneltyGWoQNWrlBOWBsSXKoHgdhFQuWO09k1ZYxEo7FRwIDm5JQUCVGVcrdkF-7XNXtjWb2Kxt_Gt625jpZG52M0AqNZXsN83s9Z7dxP598Glr1k2qfdvazvdDMqi5khWjAjJ69Ql964fY5Z8YipJXmE_YBdI9Vcc-pejD8QIEs3NvPtybnXtzcJ-Xfh6ih-Xau-PKf9kZ-LEHGu_98VlBpaVC9g-7LYUM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174510602</pqid></control><display><type>article</type><title>The Kendall and Mallows Kernels for Permutations</title><source>IEEE Electronic Library (IEL)</source><creator>Yunlong Jiao ; Vert, Jean-Philippe</creator><creatorcontrib>Yunlong Jiao ; Vert, Jean-Philippe</creatorcontrib><description>We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2719680</identifier><identifier>PMID: 28981406</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Bioinformatics ; Biomedical materials ; cluster analysis of rank data ; Clustering ; Correlation ; Correlation coefficients ; Data models ; Gene expression ; Kendall tau correlation ; Kernel ; Kernel functions ; Kernel methods ; Machine Learning ; Mallows model ; permutation ; Permutations ; Sorting ; State of the art ; Statistics ; supervised classification of biomedical data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-07, Vol.40 (7), p.1755-1769</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</citedby><cites>FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</cites><orcidid>0000-0001-9510-8441 ; 0000-0002-0776-0550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8059781$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28981406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01279273$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yunlong Jiao</creatorcontrib><creatorcontrib>Vert, Jean-Philippe</creatorcontrib><title>The Kendall and Mallows Kernels for Permutations</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.</description><subject>Analytical models</subject><subject>Bioinformatics</subject><subject>Biomedical materials</subject><subject>cluster analysis of rank data</subject><subject>Clustering</subject><subject>Correlation</subject><subject>Correlation coefficients</subject><subject>Data models</subject><subject>Gene expression</subject><subject>Kendall tau correlation</subject><subject>Kernel</subject><subject>Kernel functions</subject><subject>Kernel methods</subject><subject>Machine Learning</subject><subject>Mallows model</subject><subject>permutation</subject><subject>Permutations</subject><subject>Sorting</subject><subject>State of the art</subject><subject>Statistics</subject><subject>supervised classification of biomedical data</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1PGzEQhq0KVAL0D7RStRIXetgwY3v9cYwQkIggOISz5axtZdFmN9jZVv33dUiaA6cZjZ95NX4I-Y4wRgR9s3iZPM3GFFCOqUQtFHwhI9RMl6xi-oSMAAUtlaLqjJyn9AaAvAL2lZxRpRVyECMCi5UvHn3nbNsWtnPFU276PynPYufbVIQ-Fi8-roet3TZ9ly7JabBt8t8O9YK83t8tbqfl_PlhdjuZlzWneltyGWoQNWrlBOWBsSXKoHgdhFQuWO09k1ZYxEo7FRwIDm5JQUCVGVcrdkF-7XNXtjWb2Kxt_Gt625jpZG52M0AqNZXsN83s9Z7dxP598Glr1k2qfdvazvdDMqi5khWjAjJ69Ql964fY5Z8YipJXmE_YBdI9Vcc-pejD8QIEs3NvPtybnXtzcJ-Xfh6ih-Xau-PKf9kZ-LEHGu_98VlBpaVC9g-7LYUM</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Yunlong Jiao</creator><creator>Vert, Jean-Philippe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9510-8441</orcidid><orcidid>https://orcid.org/0000-0002-0776-0550</orcidid></search><sort><creationdate>20180701</creationdate><title>The Kendall and Mallows Kernels for Permutations</title><author>Yunlong Jiao ; Vert, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-47fc06c198d624f33b17f84cf678dfa9ee37a6a1159d8fd0640db206054cfdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>Bioinformatics</topic><topic>Biomedical materials</topic><topic>cluster analysis of rank data</topic><topic>Clustering</topic><topic>Correlation</topic><topic>Correlation coefficients</topic><topic>Data models</topic><topic>Gene expression</topic><topic>Kendall tau correlation</topic><topic>Kernel</topic><topic>Kernel functions</topic><topic>Kernel methods</topic><topic>Machine Learning</topic><topic>Mallows model</topic><topic>permutation</topic><topic>Permutations</topic><topic>Sorting</topic><topic>State of the art</topic><topic>Statistics</topic><topic>supervised classification of biomedical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yunlong Jiao</creatorcontrib><creatorcontrib>Vert, Jean-Philippe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yunlong Jiao</au><au>Vert, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kendall and Mallows Kernels for Permutations</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>40</volume><issue>7</issue><spage>1755</spage><epage>1769</epage><pages>1755-1769</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28981406</pmid><doi>10.1109/TPAMI.2017.2719680</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9510-8441</orcidid><orcidid>https://orcid.org/0000-0002-0776-0550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2018-07, Vol.40 (7), p.1755-1769 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2174510602 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Bioinformatics Biomedical materials cluster analysis of rank data Clustering Correlation Correlation coefficients Data models Gene expression Kendall tau correlation Kernel Kernel functions Kernel methods Machine Learning Mallows model permutation Permutations Sorting State of the art Statistics supervised classification of biomedical data |
title | The Kendall and Mallows Kernels for Permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kendall%20and%20Mallows%20Kernels%20for%20Permutations&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yunlong%20Jiao&rft.date=2018-07-01&rft.volume=40&rft.issue=7&rft.spage=1755&rft.epage=1769&rft.pages=1755-1769&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2719680&rft_dat=%3Cproquest_pubme%3E2174510602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174510602&rft_id=info:pmid/28981406&rft_ieee_id=8059781&rfr_iscdi=true |