Fast Median Filtering for Phase or Orientation Data
Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2018-03, Vol.40 (3), p.639-652 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 3 |
container_start_page | 639 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 40 |
creator | Storath, Martin Weinmann, Andreas |
description | Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions. |
doi_str_mv | 10.1109/TPAMI.2017.2692779 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174494397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7895218</ieee_id><sourcerecordid>2174494397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eijO72_04EhQlgcABz5ttu9USaHG3PfjvLYIcPM0k87xvJg8htwhDRNBPq-VoPh1SQDmkQlMp9Rnpo2Y6ZgnT56QPKGisFFU9chXCGgB5AuyS9KjilAqFfcImNjTR3OWlraJJuWmcL6uPqKh9tPy0wUXdsvClqxrblHUVPdvGXpOLwm6CuznOAXmfvKzGb_Fs8Todj2ZxxlE2Mc-LLBcg81RZBZwqkTmWMoTEppAiQJpLrhOOWSaEdDIVTggNNi-EoMAYG5DHQ-_O11-tC43ZliFzm42tXN0Gg0ojKCmU7NCHf-i6bn3VfWcoSs41Z3pP0QOV-ToE7wqz8-XW-m-DYPZKza9Ss1dqjkq70P2xuk23Lj9F_hx2wN0BKJ1zp7NUOqGo2A-nvXfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174494397</pqid></control><display><type>article</type><title>Fast Median Filtering for Phase or Orientation Data</title><source>IEEE Electronic Library (IEL)</source><creator>Storath, Martin ; Weinmann, Andreas</creator><creatorcontrib>Storath, Martin ; Weinmann, Andreas</creatorcontrib><description>Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2692779</identifier><identifier>PMID: 28422681</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; circle-median ; circle-valued data ; Complexity theory ; Data smoothing ; Filtration ; Image edge detection ; Interferometric synthetic aperture radar ; manifold-valued data ; MATLAB ; Median filter ; Optical flow (image analysis) ; Optical interferometry ; orientation data ; phase data ; Radar imaging ; Robustness ; Runtime ; Smoothing methods ; Synthetic aperture radar</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-03, Vol.40 (3), p.639-652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</citedby><cites>FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</cites><orcidid>0000-0003-1427-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7895218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7895218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28422681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Storath, Martin</creatorcontrib><creatorcontrib>Weinmann, Andreas</creatorcontrib><title>Fast Median Filtering for Phase or Orientation Data</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.</description><subject>Algorithms</subject><subject>circle-median</subject><subject>circle-valued data</subject><subject>Complexity theory</subject><subject>Data smoothing</subject><subject>Filtration</subject><subject>Image edge detection</subject><subject>Interferometric synthetic aperture radar</subject><subject>manifold-valued data</subject><subject>MATLAB</subject><subject>Median filter</subject><subject>Optical flow (image analysis)</subject><subject>Optical interferometry</subject><subject>orientation data</subject><subject>phase data</subject><subject>Radar imaging</subject><subject>Robustness</subject><subject>Runtime</subject><subject>Smoothing methods</subject><subject>Synthetic aperture radar</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eijO72_04EhQlgcABz5ttu9USaHG3PfjvLYIcPM0k87xvJg8htwhDRNBPq-VoPh1SQDmkQlMp9Rnpo2Y6ZgnT56QPKGisFFU9chXCGgB5AuyS9KjilAqFfcImNjTR3OWlraJJuWmcL6uPqKh9tPy0wUXdsvClqxrblHUVPdvGXpOLwm6CuznOAXmfvKzGb_Fs8Todj2ZxxlE2Mc-LLBcg81RZBZwqkTmWMoTEppAiQJpLrhOOWSaEdDIVTggNNi-EoMAYG5DHQ-_O11-tC43ZliFzm42tXN0Gg0ojKCmU7NCHf-i6bn3VfWcoSs41Z3pP0QOV-ToE7wqz8-XW-m-DYPZKza9Ss1dqjkq70P2xuk23Lj9F_hx2wN0BKJ1zp7NUOqGo2A-nvXfE</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Storath, Martin</creator><creator>Weinmann, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1427-0776</orcidid></search><sort><creationdate>20180301</creationdate><title>Fast Median Filtering for Phase or Orientation Data</title><author>Storath, Martin ; Weinmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>circle-median</topic><topic>circle-valued data</topic><topic>Complexity theory</topic><topic>Data smoothing</topic><topic>Filtration</topic><topic>Image edge detection</topic><topic>Interferometric synthetic aperture radar</topic><topic>manifold-valued data</topic><topic>MATLAB</topic><topic>Median filter</topic><topic>Optical flow (image analysis)</topic><topic>Optical interferometry</topic><topic>orientation data</topic><topic>phase data</topic><topic>Radar imaging</topic><topic>Robustness</topic><topic>Runtime</topic><topic>Smoothing methods</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storath, Martin</creatorcontrib><creatorcontrib>Weinmann, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Storath, Martin</au><au>Weinmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Median Filtering for Phase or Orientation Data</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>40</volume><issue>3</issue><spage>639</spage><epage>652</epage><pages>639-652</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28422681</pmid><doi>10.1109/TPAMI.2017.2692779</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1427-0776</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2018-03, Vol.40 (3), p.639-652 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2174494397 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms circle-median circle-valued data Complexity theory Data smoothing Filtration Image edge detection Interferometric synthetic aperture radar manifold-valued data MATLAB Median filter Optical flow (image analysis) Optical interferometry orientation data phase data Radar imaging Robustness Runtime Smoothing methods Synthetic aperture radar |
title | Fast Median Filtering for Phase or Orientation Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Median%20Filtering%20for%20Phase%20or%20Orientation%20Data&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Storath,%20Martin&rft.date=2018-03-01&rft.volume=40&rft.issue=3&rft.spage=639&rft.epage=652&rft.pages=639-652&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2692779&rft_dat=%3Cproquest_RIE%3E2174494397%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174494397&rft_id=info:pmid/28422681&rft_ieee_id=7895218&rfr_iscdi=true |