Fast Median Filtering for Phase or Orientation Data

Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2018-03, Vol.40 (3), p.639-652
Hauptverfasser: Storath, Martin, Weinmann, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 3
container_start_page 639
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 40
creator Storath, Martin
Weinmann, Andreas
description Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.
doi_str_mv 10.1109/TPAMI.2017.2692779
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174494397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7895218</ieee_id><sourcerecordid>2174494397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eijO72_04EhQlgcABz5ttu9USaHG3PfjvLYIcPM0k87xvJg8htwhDRNBPq-VoPh1SQDmkQlMp9Rnpo2Y6ZgnT56QPKGisFFU9chXCGgB5AuyS9KjilAqFfcImNjTR3OWlraJJuWmcL6uPqKh9tPy0wUXdsvClqxrblHUVPdvGXpOLwm6CuznOAXmfvKzGb_Fs8Todj2ZxxlE2Mc-LLBcg81RZBZwqkTmWMoTEppAiQJpLrhOOWSaEdDIVTggNNi-EoMAYG5DHQ-_O11-tC43ZliFzm42tXN0Gg0ojKCmU7NCHf-i6bn3VfWcoSs41Z3pP0QOV-ToE7wqz8-XW-m-DYPZKza9Ss1dqjkq70P2xuk23Lj9F_hx2wN0BKJ1zp7NUOqGo2A-nvXfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174494397</pqid></control><display><type>article</type><title>Fast Median Filtering for Phase or Orientation Data</title><source>IEEE Electronic Library (IEL)</source><creator>Storath, Martin ; Weinmann, Andreas</creator><creatorcontrib>Storath, Martin ; Weinmann, Andreas</creatorcontrib><description>Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2692779</identifier><identifier>PMID: 28422681</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; circle-median ; circle-valued data ; Complexity theory ; Data smoothing ; Filtration ; Image edge detection ; Interferometric synthetic aperture radar ; manifold-valued data ; MATLAB ; Median filter ; Optical flow (image analysis) ; Optical interferometry ; orientation data ; phase data ; Radar imaging ; Robustness ; Runtime ; Smoothing methods ; Synthetic aperture radar</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-03, Vol.40 (3), p.639-652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</citedby><cites>FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</cites><orcidid>0000-0003-1427-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7895218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7895218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28422681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Storath, Martin</creatorcontrib><creatorcontrib>Weinmann, Andreas</creatorcontrib><title>Fast Median Filtering for Phase or Orientation Data</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.</description><subject>Algorithms</subject><subject>circle-median</subject><subject>circle-valued data</subject><subject>Complexity theory</subject><subject>Data smoothing</subject><subject>Filtration</subject><subject>Image edge detection</subject><subject>Interferometric synthetic aperture radar</subject><subject>manifold-valued data</subject><subject>MATLAB</subject><subject>Median filter</subject><subject>Optical flow (image analysis)</subject><subject>Optical interferometry</subject><subject>orientation data</subject><subject>phase data</subject><subject>Radar imaging</subject><subject>Robustness</subject><subject>Runtime</subject><subject>Smoothing methods</subject><subject>Synthetic aperture radar</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eijO72_04EhQlgcABz5ttu9USaHG3PfjvLYIcPM0k87xvJg8htwhDRNBPq-VoPh1SQDmkQlMp9Rnpo2Y6ZgnT56QPKGisFFU9chXCGgB5AuyS9KjilAqFfcImNjTR3OWlraJJuWmcL6uPqKh9tPy0wUXdsvClqxrblHUVPdvGXpOLwm6CuznOAXmfvKzGb_Fs8Todj2ZxxlE2Mc-LLBcg81RZBZwqkTmWMoTEppAiQJpLrhOOWSaEdDIVTggNNi-EoMAYG5DHQ-_O11-tC43ZliFzm42tXN0Gg0ojKCmU7NCHf-i6bn3VfWcoSs41Z3pP0QOV-ToE7wqz8-XW-m-DYPZKza9Ss1dqjkq70P2xuk23Lj9F_hx2wN0BKJ1zp7NUOqGo2A-nvXfE</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Storath, Martin</creator><creator>Weinmann, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1427-0776</orcidid></search><sort><creationdate>20180301</creationdate><title>Fast Median Filtering for Phase or Orientation Data</title><author>Storath, Martin ; Weinmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4dfcd607db8a804286ce3b3105ab0b100bd749541cc667e7b6e6690adf6620333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>circle-median</topic><topic>circle-valued data</topic><topic>Complexity theory</topic><topic>Data smoothing</topic><topic>Filtration</topic><topic>Image edge detection</topic><topic>Interferometric synthetic aperture radar</topic><topic>manifold-valued data</topic><topic>MATLAB</topic><topic>Median filter</topic><topic>Optical flow (image analysis)</topic><topic>Optical interferometry</topic><topic>orientation data</topic><topic>phase data</topic><topic>Radar imaging</topic><topic>Robustness</topic><topic>Runtime</topic><topic>Smoothing methods</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Storath, Martin</creatorcontrib><creatorcontrib>Weinmann, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Storath, Martin</au><au>Weinmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Median Filtering for Phase or Orientation Data</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>40</volume><issue>3</issue><spage>639</spage><epage>652</epage><pages>639-652</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Median filtering is among the most utilized tools for smoothing real-valued data, as it is robust, edge-preserving, value-preserving, and yet can be computed efficiently. For data living on the unit circle, such as phase data or orientation data, a filter with similar properties is desirable. For these data, there is no unique means to define a median; so we discuss various possibilities. The arc distance median turns out to be the only variant which leads to robust, edge-preserving and value-preserving smoothing. However, there are no efficient algorithms for filtering based on the arc distance median. Here, we propose fast algorithms for filtering of signals and images with values on the unit circle based on the arc distance median. For non-quantized data, we develop an algorithm that scales linearly with the filter size. The runtime of our reference implementation is only moderately higher than the Matlab implementation of the classical median filter for real-valued data. For quantized data, we obtain an algorithm of constant complexity w.r.t. the filter size. We demonstrate the performance of our algorithms for real life data sets: phase images from interferometric synthetic aperture radar, planar flow fields from optical flow, and time series of wind directions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28422681</pmid><doi>10.1109/TPAMI.2017.2692779</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1427-0776</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2018-03, Vol.40 (3), p.639-652
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2174494397
source IEEE Electronic Library (IEL)
subjects Algorithms
circle-median
circle-valued data
Complexity theory
Data smoothing
Filtration
Image edge detection
Interferometric synthetic aperture radar
manifold-valued data
MATLAB
Median filter
Optical flow (image analysis)
Optical interferometry
orientation data
phase data
Radar imaging
Robustness
Runtime
Smoothing methods
Synthetic aperture radar
title Fast Median Filtering for Phase or Orientation Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Median%20Filtering%20for%20Phase%20or%20Orientation%20Data&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Storath,%20Martin&rft.date=2018-03-01&rft.volume=40&rft.issue=3&rft.spage=639&rft.epage=652&rft.pages=639-652&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2692779&rft_dat=%3Cproquest_RIE%3E2174494397%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174494397&rft_id=info:pmid/28422681&rft_ieee_id=7895218&rfr_iscdi=true