Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation
In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct u...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2017-03, Vol.28 (3), p.759-765 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 3 |
container_start_page | 759 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 28 |
creator | Zhu, Yuanming Hou, Zhongsheng Qian, Feng Du, Wenli |
description | In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process. |
doi_str_mv | 10.1109/TNNLS.2016.2522098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174446476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7414467</ieee_id><sourcerecordid>2174446476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbKn9AwoS8OIldV_Z3Rzbam2hRjAV7WnZJBNMSZOYTQT_vamtPTiXGZhvHnwIXRI8IgT7d6sgWIYjiokYUY9S7KsT1KdEUJcypU6PtXzvoaG1G9yFwJ7g_jnqUeETjzDZR4v71uTOy2QWBNadGAuJ81QmkLuzGsAZJ6Zqsi9wpmXR1GXuvGXNhzO2FRTOfB2uQyfMtm1umqwsLtBZanILw0MeoNfZw2o6d5fPj4vpeOnGzCONKz0jcYKZTBhXlHDiCZWmBgOOTBJFTPhKyBSY1yG-MhxEbIQnZJQYTElq2ADd7vdWdfnZgm30NrMx5LkpoGytJooKIThXskNv_qGbsq2L7jtNieScCy5FR9E9FdeltTWkuqqzram_NcF651r_utY71_rguhu6Pqxuoy0kx5E_sx1wtQcyADi2JSfdVcl-ACQ2f5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174446476</pqid></control><display><type>article</type><title>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yuanming ; Hou, Zhongsheng ; Qian, Feng ; Du, Wenli</creator><creatorcontrib>Zhu, Yuanming ; Hou, Zhongsheng ; Qian, Feng ; Du, Wenli</creatorcontrib><description>In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2522098</identifier><identifier>PMID: 26915137</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Aspen HYSYS ; Basis functions ; Complexity theory ; Computer simulation ; Control stability ; Control systems design ; controller dynamic linearization ; Controllers ; Data models ; data-driven control (DDC) ; Discrete time systems ; Distillation ; First principles ; Mathematical model ; Mathematical models ; model-free adaptive control (MFAC) ; Neural networks ; Nonlinear control ; Nonlinear systems ; Numerical models ; Radial basis function ; Styrene ; Theoretical analysis ; Tuning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-03, Vol.28 (3), p.759-765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</citedby><cites>FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7414467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7414467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26915137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><title>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Aspen HYSYS</subject><subject>Basis functions</subject><subject>Complexity theory</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>controller dynamic linearization</subject><subject>Controllers</subject><subject>Data models</subject><subject>data-driven control (DDC)</subject><subject>Discrete time systems</subject><subject>Distillation</subject><subject>First principles</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>model-free adaptive control (MFAC)</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Numerical models</subject><subject>Radial basis function</subject><subject>Styrene</subject><subject>Theoretical analysis</subject><subject>Tuning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbKn9AwoS8OIldV_Z3Rzbam2hRjAV7WnZJBNMSZOYTQT_vamtPTiXGZhvHnwIXRI8IgT7d6sgWIYjiokYUY9S7KsT1KdEUJcypU6PtXzvoaG1G9yFwJ7g_jnqUeETjzDZR4v71uTOy2QWBNadGAuJ81QmkLuzGsAZJ6Zqsi9wpmXR1GXuvGXNhzO2FRTOfB2uQyfMtm1umqwsLtBZanILw0MeoNfZw2o6d5fPj4vpeOnGzCONKz0jcYKZTBhXlHDiCZWmBgOOTBJFTPhKyBSY1yG-MhxEbIQnZJQYTElq2ADd7vdWdfnZgm30NrMx5LkpoGytJooKIThXskNv_qGbsq2L7jtNieScCy5FR9E9FdeltTWkuqqzram_NcF651r_utY71_rguhu6Pqxuoy0kx5E_sx1wtQcyADi2JSfdVcl-ACQ2f5k</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Zhu, Yuanming</creator><creator>Hou, Zhongsheng</creator><creator>Qian, Feng</creator><creator>Du, Wenli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</title><author>Zhu, Yuanming ; Hou, Zhongsheng ; Qian, Feng ; Du, Wenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Aspen HYSYS</topic><topic>Basis functions</topic><topic>Complexity theory</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>controller dynamic linearization</topic><topic>Controllers</topic><topic>Data models</topic><topic>data-driven control (DDC)</topic><topic>Discrete time systems</topic><topic>Distillation</topic><topic>First principles</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>model-free adaptive control (MFAC)</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Numerical models</topic><topic>Radial basis function</topic><topic>Styrene</topic><topic>Theoretical analysis</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yuanming</au><au>Hou, Zhongsheng</au><au>Qian, Feng</au><au>Du, Wenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>28</volume><issue>3</issue><spage>759</spage><epage>765</epage><pages>759-765</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26915137</pmid><doi>10.1109/TNNLS.2016.2522098</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2017-03, Vol.28 (3), p.759-765 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2174446476 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive control Aspen HYSYS Basis functions Complexity theory Computer simulation Control stability Control systems design controller dynamic linearization Controllers Data models data-driven control (DDC) Discrete time systems Distillation First principles Mathematical model Mathematical models model-free adaptive control (MFAC) Neural networks Nonlinear control Nonlinear systems Numerical models Radial basis function Styrene Theoretical analysis Tuning |
title | Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20RBFNNs-Based%20Model-Free%20Adaptive%20Control%20With%20Aspen%20HYSYS%20Simulation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Yuanming&rft.date=2017-03-01&rft.volume=28&rft.issue=3&rft.spage=759&rft.epage=765&rft.pages=759-765&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2522098&rft_dat=%3Cproquest_RIE%3E2174446476%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174446476&rft_id=info:pmid/26915137&rft_ieee_id=7414467&rfr_iscdi=true |