Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation

In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2017-03, Vol.28 (3), p.759-765
Hauptverfasser: Zhu, Yuanming, Hou, Zhongsheng, Qian, Feng, Du, Wenli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 3
container_start_page 759
container_title IEEE transaction on neural networks and learning systems
container_volume 28
creator Zhu, Yuanming
Hou, Zhongsheng
Qian, Feng
Du, Wenli
description In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.
doi_str_mv 10.1109/TNNLS.2016.2522098
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174446476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7414467</ieee_id><sourcerecordid>2174446476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbKn9AwoS8OIldV_Z3Rzbam2hRjAV7WnZJBNMSZOYTQT_vamtPTiXGZhvHnwIXRI8IgT7d6sgWIYjiokYUY9S7KsT1KdEUJcypU6PtXzvoaG1G9yFwJ7g_jnqUeETjzDZR4v71uTOy2QWBNadGAuJ81QmkLuzGsAZJ6Zqsi9wpmXR1GXuvGXNhzO2FRTOfB2uQyfMtm1umqwsLtBZanILw0MeoNfZw2o6d5fPj4vpeOnGzCONKz0jcYKZTBhXlHDiCZWmBgOOTBJFTPhKyBSY1yG-MhxEbIQnZJQYTElq2ADd7vdWdfnZgm30NrMx5LkpoGytJooKIThXskNv_qGbsq2L7jtNieScCy5FR9E9FdeltTWkuqqzram_NcF651r_utY71_rguhu6Pqxuoy0kx5E_sx1wtQcyADi2JSfdVcl-ACQ2f5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174446476</pqid></control><display><type>article</type><title>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yuanming ; Hou, Zhongsheng ; Qian, Feng ; Du, Wenli</creator><creatorcontrib>Zhu, Yuanming ; Hou, Zhongsheng ; Qian, Feng ; Du, Wenli</creatorcontrib><description>In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2016.2522098</identifier><identifier>PMID: 26915137</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Aspen HYSYS ; Basis functions ; Complexity theory ; Computer simulation ; Control stability ; Control systems design ; controller dynamic linearization ; Controllers ; Data models ; data-driven control (DDC) ; Discrete time systems ; Distillation ; First principles ; Mathematical model ; Mathematical models ; model-free adaptive control (MFAC) ; Neural networks ; Nonlinear control ; Nonlinear systems ; Numerical models ; Radial basis function ; Styrene ; Theoretical analysis ; Tuning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2017-03, Vol.28 (3), p.759-765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</citedby><cites>FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7414467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7414467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26915137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><title>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Aspen HYSYS</subject><subject>Basis functions</subject><subject>Complexity theory</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>controller dynamic linearization</subject><subject>Controllers</subject><subject>Data models</subject><subject>data-driven control (DDC)</subject><subject>Discrete time systems</subject><subject>Distillation</subject><subject>First principles</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>model-free adaptive control (MFAC)</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Numerical models</subject><subject>Radial basis function</subject><subject>Styrene</subject><subject>Theoretical analysis</subject><subject>Tuning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRbKn9AwoS8OIldV_Z3Rzbam2hRjAV7WnZJBNMSZOYTQT_vamtPTiXGZhvHnwIXRI8IgT7d6sgWIYjiokYUY9S7KsT1KdEUJcypU6PtXzvoaG1G9yFwJ7g_jnqUeETjzDZR4v71uTOy2QWBNadGAuJ81QmkLuzGsAZJ6Zqsi9wpmXR1GXuvGXNhzO2FRTOfB2uQyfMtm1umqwsLtBZanILw0MeoNfZw2o6d5fPj4vpeOnGzCONKz0jcYKZTBhXlHDiCZWmBgOOTBJFTPhKyBSY1yG-MhxEbIQnZJQYTElq2ADd7vdWdfnZgm30NrMx5LkpoGytJooKIThXskNv_qGbsq2L7jtNieScCy5FR9E9FdeltTWkuqqzram_NcF651r_utY71_rguhu6Pqxuoy0kx5E_sx1wtQcyADi2JSfdVcl-ACQ2f5k</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Zhu, Yuanming</creator><creator>Hou, Zhongsheng</creator><creator>Qian, Feng</creator><creator>Du, Wenli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</title><author>Zhu, Yuanming ; Hou, Zhongsheng ; Qian, Feng ; Du, Wenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-75a70d037d3482141568ffa0e0badbb369867fe3503798a4e6ca6567bda021fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Aspen HYSYS</topic><topic>Basis functions</topic><topic>Complexity theory</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>controller dynamic linearization</topic><topic>Controllers</topic><topic>Data models</topic><topic>data-driven control (DDC)</topic><topic>Discrete time systems</topic><topic>Distillation</topic><topic>First principles</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>model-free adaptive control (MFAC)</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Numerical models</topic><topic>Radial basis function</topic><topic>Styrene</topic><topic>Theoretical analysis</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuanming</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><creatorcontrib>Qian, Feng</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yuanming</au><au>Hou, Zhongsheng</au><au>Qian, Feng</au><au>Du, Wenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>28</volume><issue>3</issue><spage>759</spage><epage>765</epage><pages>759-765</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26915137</pmid><doi>10.1109/TNNLS.2016.2522098</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2017-03, Vol.28 (3), p.759-765
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2174446476
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Aspen HYSYS
Basis functions
Complexity theory
Computer simulation
Control stability
Control systems design
controller dynamic linearization
Controllers
Data models
data-driven control (DDC)
Discrete time systems
Distillation
First principles
Mathematical model
Mathematical models
model-free adaptive control (MFAC)
Neural networks
Nonlinear control
Nonlinear systems
Numerical models
Radial basis function
Styrene
Theoretical analysis
Tuning
title Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20RBFNNs-Based%20Model-Free%20Adaptive%20Control%20With%20Aspen%20HYSYS%20Simulation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhu,%20Yuanming&rft.date=2017-03-01&rft.volume=28&rft.issue=3&rft.spage=759&rft.epage=765&rft.pages=759-765&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2016.2522098&rft_dat=%3Cproquest_RIE%3E2174446476%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174446476&rft_id=info:pmid/26915137&rft_ieee_id=7414467&rfr_iscdi=true