Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines

In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-07, Vol.64 (7), p.5678-5689
Hauptverfasser: Xiaoxu Liu, Zhiwei Gao, Chen, Michael Z. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5689
container_issue 7
container_start_page 5678
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Xiaoxu Liu
Zhiwei Gao
Chen, Michael Z. Q.
description In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.
doi_str_mv 10.1109/TIE.2017.2677327
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174439391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7869328</ieee_id><sourcerecordid>2174439391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqWwI7FYYk7x2U5sj6VqoVIRQ4MYLSdxSkqahDgZ2ol34A15ElylYrrTr-9Odx9Ct0AmAEQ9xMv5hBIQExoJwag4QyMIQxEoxeU5GhEqZEAIjy7RlXNbQoCHEI5QGZtPsyl-v3_W_cZWNV70h8Mev9SZLfGjcTbDC9OXHZ67rtiZrqgrbKoMr4tNZUo8q3eNrdyQvxfdB542TVmkQ9DVPvNw3LdJUVl3jS5yUzp7c6pj9LaYx7PnYPX6tJxNV0HKGOuCiAuuqE1CQZgwJIFERJCQPAk5N1IagAiMoanMEggJ5MrkeSZSySPpu4izMbof9jZt_dVb1-lt3bf-XqcpCM6ZYgo8RQYqbWvnWpvrpvUvtnsNRB-dau9UH53qk1M_cjeMFNbaf1zISDEq2R84m3PX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174439391</pqid></control><display><type>article</type><title>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</title><source>IEEE Electronic Library (IEL)</source><creator>Xiaoxu Liu ; Zhiwei Gao ; Chen, Michael Z. Q.</creator><creatorcontrib>Xiaoxu Liu ; Zhiwei Gao ; Chen, Michael Z. Q.</creatorcontrib><description>In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2677327</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensation ; Construction planning ; Design optimization ; Dynamic stability ; Fault diagnosis ; Fault tolerance ; Fault tolerant control ; Faults ; Fuzzy systems ; Mathematical analysis ; Matrix methods ; Nonlinear systems ; Observers ; Robust fault estimation ; Robustness ; signal compensation ; System dynamics ; Systems health monitoring ; Takagi–Sugeno (T–S) fuzzy model ; Wind turbines</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-07, Vol.64 (7), p.5678-5689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</citedby><cites>FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7869328$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids></links><search><creatorcontrib>Xiaoxu Liu</creatorcontrib><creatorcontrib>Zhiwei Gao</creatorcontrib><creatorcontrib>Chen, Michael Z. Q.</creatorcontrib><title>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.</description><subject>Compensation</subject><subject>Construction planning</subject><subject>Design optimization</subject><subject>Dynamic stability</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Fault tolerant control</subject><subject>Faults</subject><subject>Fuzzy systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Robust fault estimation</subject><subject>Robustness</subject><subject>signal compensation</subject><subject>System dynamics</subject><subject>Systems health monitoring</subject><subject>Takagi–Sugeno (T–S) fuzzy model</subject><subject>Wind turbines</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhi0EEqWwI7FYYk7x2U5sj6VqoVIRQ4MYLSdxSkqahDgZ2ol34A15ElylYrrTr-9Odx9Ct0AmAEQ9xMv5hBIQExoJwag4QyMIQxEoxeU5GhEqZEAIjy7RlXNbQoCHEI5QGZtPsyl-v3_W_cZWNV70h8Mev9SZLfGjcTbDC9OXHZ67rtiZrqgrbKoMr4tNZUo8q3eNrdyQvxfdB542TVmkQ9DVPvNw3LdJUVl3jS5yUzp7c6pj9LaYx7PnYPX6tJxNV0HKGOuCiAuuqE1CQZgwJIFERJCQPAk5N1IagAiMoanMEggJ5MrkeSZSySPpu4izMbof9jZt_dVb1-lt3bf-XqcpCM6ZYgo8RQYqbWvnWpvrpvUvtnsNRB-dau9UH53qk1M_cjeMFNbaf1zISDEq2R84m3PX</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Xiaoxu Liu</creator><creator>Zhiwei Gao</creator><creator>Chen, Michael Z. Q.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201707</creationdate><title>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</title><author>Xiaoxu Liu ; Zhiwei Gao ; Chen, Michael Z. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compensation</topic><topic>Construction planning</topic><topic>Design optimization</topic><topic>Dynamic stability</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Fault tolerant control</topic><topic>Faults</topic><topic>Fuzzy systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Robust fault estimation</topic><topic>Robustness</topic><topic>signal compensation</topic><topic>System dynamics</topic><topic>Systems health monitoring</topic><topic>Takagi–Sugeno (T–S) fuzzy model</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoxu Liu</creatorcontrib><creatorcontrib>Zhiwei Gao</creatorcontrib><creatorcontrib>Chen, Michael Z. Q.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoxu Liu</au><au>Zhiwei Gao</au><au>Chen, Michael Z. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-07</date><risdate>2017</risdate><volume>64</volume><issue>7</issue><spage>5678</spage><epage>5689</epage><pages>5678-5689</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2677327</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-07, Vol.64 (7), p.5678-5689
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2174439391
source IEEE Electronic Library (IEL)
subjects Compensation
Construction planning
Design optimization
Dynamic stability
Fault diagnosis
Fault tolerance
Fault tolerant control
Faults
Fuzzy systems
Mathematical analysis
Matrix methods
Nonlinear systems
Observers
Robust fault estimation
Robustness
signal compensation
System dynamics
Systems health monitoring
Takagi–Sugeno (T–S) fuzzy model
Wind turbines
title Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Takagi%E2%80%93Sugeno%20Fuzzy%20Model%20Based%20Fault%20Estimation%20and%20Signal%20Compensation%20With%20Application%20to%20Wind%20Turbines&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Xiaoxu%20Liu&rft.date=2017-07&rft.volume=64&rft.issue=7&rft.spage=5678&rft.epage=5689&rft.pages=5678-5689&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2677327&rft_dat=%3Cproquest_ieee_%3E2174439391%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174439391&rft_id=info:pmid/&rft_ieee_id=7869328&rfr_iscdi=true