Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines
In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-07, Vol.64 (7), p.5678-5689 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5689 |
---|---|
container_issue | 7 |
container_start_page | 5678 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Xiaoxu Liu Zhiwei Gao Chen, Michael Z. Q. |
description | In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system. |
doi_str_mv | 10.1109/TIE.2017.2677327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2174439391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7869328</ieee_id><sourcerecordid>2174439391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqWwI7FYYk7x2U5sj6VqoVIRQ4MYLSdxSkqahDgZ2ol34A15ElylYrrTr-9Odx9Ct0AmAEQ9xMv5hBIQExoJwag4QyMIQxEoxeU5GhEqZEAIjy7RlXNbQoCHEI5QGZtPsyl-v3_W_cZWNV70h8Mev9SZLfGjcTbDC9OXHZ67rtiZrqgrbKoMr4tNZUo8q3eNrdyQvxfdB542TVmkQ9DVPvNw3LdJUVl3jS5yUzp7c6pj9LaYx7PnYPX6tJxNV0HKGOuCiAuuqE1CQZgwJIFERJCQPAk5N1IagAiMoanMEggJ5MrkeSZSySPpu4izMbof9jZt_dVb1-lt3bf-XqcpCM6ZYgo8RQYqbWvnWpvrpvUvtnsNRB-dau9UH53qk1M_cjeMFNbaf1zISDEq2R84m3PX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174439391</pqid></control><display><type>article</type><title>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</title><source>IEEE Electronic Library (IEL)</source><creator>Xiaoxu Liu ; Zhiwei Gao ; Chen, Michael Z. Q.</creator><creatorcontrib>Xiaoxu Liu ; Zhiwei Gao ; Chen, Michael Z. Q.</creatorcontrib><description>In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2677327</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensation ; Construction planning ; Design optimization ; Dynamic stability ; Fault diagnosis ; Fault tolerance ; Fault tolerant control ; Faults ; Fuzzy systems ; Mathematical analysis ; Matrix methods ; Nonlinear systems ; Observers ; Robust fault estimation ; Robustness ; signal compensation ; System dynamics ; Systems health monitoring ; Takagi–Sugeno (T–S) fuzzy model ; Wind turbines</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-07, Vol.64 (7), p.5678-5689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</citedby><cites>FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7869328$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids></links><search><creatorcontrib>Xiaoxu Liu</creatorcontrib><creatorcontrib>Zhiwei Gao</creatorcontrib><creatorcontrib>Chen, Michael Z. Q.</creatorcontrib><title>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.</description><subject>Compensation</subject><subject>Construction planning</subject><subject>Design optimization</subject><subject>Dynamic stability</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Fault tolerant control</subject><subject>Faults</subject><subject>Fuzzy systems</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Robust fault estimation</subject><subject>Robustness</subject><subject>signal compensation</subject><subject>System dynamics</subject><subject>Systems health monitoring</subject><subject>Takagi–Sugeno (T–S) fuzzy model</subject><subject>Wind turbines</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhi0EEqWwI7FYYk7x2U5sj6VqoVIRQ4MYLSdxSkqahDgZ2ol34A15ElylYrrTr-9Odx9Ct0AmAEQ9xMv5hBIQExoJwag4QyMIQxEoxeU5GhEqZEAIjy7RlXNbQoCHEI5QGZtPsyl-v3_W_cZWNV70h8Mev9SZLfGjcTbDC9OXHZ67rtiZrqgrbKoMr4tNZUo8q3eNrdyQvxfdB542TVmkQ9DVPvNw3LdJUVl3jS5yUzp7c6pj9LaYx7PnYPX6tJxNV0HKGOuCiAuuqE1CQZgwJIFERJCQPAk5N1IagAiMoanMEggJ5MrkeSZSySPpu4izMbof9jZt_dVb1-lt3bf-XqcpCM6ZYgo8RQYqbWvnWpvrpvUvtnsNRB-dau9UH53qk1M_cjeMFNbaf1zISDEq2R84m3PX</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Xiaoxu Liu</creator><creator>Zhiwei Gao</creator><creator>Chen, Michael Z. Q.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201707</creationdate><title>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</title><author>Xiaoxu Liu ; Zhiwei Gao ; Chen, Michael Z. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-647492eb57037a0b1b761b0fb544a88a1161aa2c8db1501f9affd7c8468aff643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compensation</topic><topic>Construction planning</topic><topic>Design optimization</topic><topic>Dynamic stability</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Fault tolerant control</topic><topic>Faults</topic><topic>Fuzzy systems</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Robust fault estimation</topic><topic>Robustness</topic><topic>signal compensation</topic><topic>System dynamics</topic><topic>Systems health monitoring</topic><topic>Takagi–Sugeno (T–S) fuzzy model</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoxu Liu</creatorcontrib><creatorcontrib>Zhiwei Gao</creatorcontrib><creatorcontrib>Chen, Michael Z. Q.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoxu Liu</au><au>Zhiwei Gao</au><au>Chen, Michael Z. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-07</date><risdate>2017</risdate><volume>64</volume><issue>7</issue><spage>5678</spage><epage>5689</epage><pages>5678-5689</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In response to the high demand of the operation reliability by implementing real-time monitoring and system health management, a robust fault estimation and fault-tolerant control approach is proposed for Takagi-Sugeno fuzzy systems in this study, by integrating the augmented system method, unknown input fuzzy observer design, linear matrix inequality optimization, and signal compensation techniques. Specifically, a fuzzy augmented system method is used to construct an augmented plant with the concerned faults and system states being the augmented states. An unknown input fuzzy observer technique is thus utilized to estimate the augmented states and decouple unknown inputs that can be decoupled. A linear matrix inequality approach is further addressed to ensure the global stability of the estimation error dynamics and attenuate the influences from the unknown inputs that cannot be decoupled. As a result, the robust estimates of the concerned faults and system states can be obtained simultaneously. Based on the fault estimates, a signal compensation scheme is developed to remove the effects of the faults on the system dynamics and outputs, leading to a stable dynamic satisfying the expected performance. Finally, the effectiveness of the proposed Takagi-Sugeno model based fault estimation and signal compensation algorithms is demonstrated by a case study on a 4.8-MW wind turbine benchmark system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2677327</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-07, Vol.64 (7), p.5678-5689 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2174439391 |
source | IEEE Electronic Library (IEL) |
subjects | Compensation Construction planning Design optimization Dynamic stability Fault diagnosis Fault tolerance Fault tolerant control Faults Fuzzy systems Mathematical analysis Matrix methods Nonlinear systems Observers Robust fault estimation Robustness signal compensation System dynamics Systems health monitoring Takagi–Sugeno (T–S) fuzzy model Wind turbines |
title | Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Takagi%E2%80%93Sugeno%20Fuzzy%20Model%20Based%20Fault%20Estimation%20and%20Signal%20Compensation%20With%20Application%20to%20Wind%20Turbines&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Xiaoxu%20Liu&rft.date=2017-07&rft.volume=64&rft.issue=7&rft.spage=5678&rft.epage=5689&rft.pages=5678-5689&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2677327&rft_dat=%3Cproquest_ieee_%3E2174439391%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174439391&rft_id=info:pmid/&rft_ieee_id=7869328&rfr_iscdi=true |