An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks

Homeostatic plasticity is a stabilizing mechanism commonly observed in real neural systems that allows neurons to maintain their activity around a functional operating point. This phenomenon can be used in neuromorphic systems to compensate for slowly changing conditions or chronic shifts in the sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2017-12, Vol.11 (6), p.1271-1277
Hauptverfasser: Ning Qiao, Bartolozzi, Chiara, Indiveri, Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1277
container_issue 6
container_start_page 1271
container_title IEEE transactions on biomedical circuits and systems
container_volume 11
creator Ning Qiao
Bartolozzi, Chiara
Indiveri, Giacomo
description Homeostatic plasticity is a stabilizing mechanism commonly observed in real neural systems that allows neurons to maintain their activity around a functional operating point. This phenomenon can be used in neuromorphic systems to compensate for slowly changing conditions or chronic shifts in the system configuration. However, to avoid interference with other adaptation or learning processes active in the neuromorphic system, it is important that the homeostatic plasticity mechanism operates on time scales that are much longer than conventional synaptic plasticity ones. In this paper we present an ultralow leakage circuit, integrated into an automatic gain control scheme, that can implement the synaptic scaling homeostatic process over extremely long time scales. Synaptic scaling consists in globally scaling the synaptic weights of all synapses impinging onto a neuron maintaining their relative differences, to preserve the effects of learning. The scheme we propose controls the global gain of analog log-domain synapse circuits to keep the neuron's average firing rate constant around a set operating point, over extremely long time scales. To validate the proposed scheme, we implemented the ultralow leakage synaptic scaling homeostatic plasticity circuit in a standard 0.18 μm complementary metal-oxide-semiconductor process, and integrated it in an array of dynamic synapses connected to an adaptive integrate and fire neuron. The circuit occupies a silicon area of 84 μm × 22 μm and consumes approximately 10.8 nW with a 1.8 V supply voltage. We present experimental results from the homeostatic circuit and demonstrate how it can be configured to exhibit time scales of up to 100 ks, thanks to a controllable leakage current that can be scaled down to 0.45 aA (2.8 electrons per second).
doi_str_mv 10.1109/TBCAS.2017.2754383
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174437844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8097002</ieee_id><sourcerecordid>1984262654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f752939c9145f01fbc369d4453988ad70eab3b6e3a61440f7d2d3027a010abf3</originalsourceid><addsrcrecordid>eNpdkU2P0zAQhi0EYpfCHwAJWeKyl5TxR-L4WCKWRaoEUos4Wk4yKd5N4mI7Qv33JNuyBy4zo5nnHY3mJeQtgzVjoD_uP1Wb3ZoDU2uucilK8YxcMy0h01rD86UWPJO5zK_IqxjvAfKCa_6SXM1RC8nFNRk3I_3Rp2B7_4du0T7YA9LdabTH5Bq6a2zvxgO98wP6mOzS-97bOGeXTrRyoZlcoj9d-kUrP3buMAVb90j3bsBHNUY6HWnylAHQh_iavOhsH_HNJa_I_vbzvrrLtt--fK0226yRACnrVD4fqBvNZN4B6-pGFLqVMhe6LG2rAG0t6gKFLZiU0KmWtwK4ssDA1p1YkZvz2mPwvyeMyQwuNtj3dkQ_RcN0KXnBi_lpK_LhP_TeT2GcjzOcKSmFKuVC8TPVBB9jwM4cgxtsOBkGZjHDPJphFjPMxYxZ9P6yeqoHbJ8k_74_A-_OgEPEp3EJWgFw8RcrNox9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174437844</pqid></control><display><type>article</type><title>An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks</title><source>IEEE Electronic Library (IEL)</source><creator>Ning Qiao ; Bartolozzi, Chiara ; Indiveri, Giacomo</creator><creatorcontrib>Ning Qiao ; Bartolozzi, Chiara ; Indiveri, Giacomo</creatorcontrib><description>Homeostatic plasticity is a stabilizing mechanism commonly observed in real neural systems that allows neurons to maintain their activity around a functional operating point. This phenomenon can be used in neuromorphic systems to compensate for slowly changing conditions or chronic shifts in the system configuration. However, to avoid interference with other adaptation or learning processes active in the neuromorphic system, it is important that the homeostatic plasticity mechanism operates on time scales that are much longer than conventional synaptic plasticity ones. In this paper we present an ultralow leakage circuit, integrated into an automatic gain control scheme, that can implement the synaptic scaling homeostatic process over extremely long time scales. Synaptic scaling consists in globally scaling the synaptic weights of all synapses impinging onto a neuron maintaining their relative differences, to preserve the effects of learning. The scheme we propose controls the global gain of analog log-domain synapse circuits to keep the neuron's average firing rate constant around a set operating point, over extremely long time scales. To validate the proposed scheme, we implemented the ultralow leakage synaptic scaling homeostatic plasticity circuit in a standard 0.18 μm complementary metal-oxide-semiconductor process, and integrated it in an array of dynamic synapses connected to an adaptive integrate and fire neuron. The circuit occupies a silicon area of 84 μm × 22 μm and consumes approximately 10.8 nW with a 1.8 V supply voltage. We present experimental results from the homeostatic circuit and demonstrate how it can be configured to exhibit time scales of up to 100 ks, thanks to a controllable leakage current that can be scaled down to 0.45 aA (2.8 electrons per second).</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2017.2754383</identifier><identifier>PMID: 29293423</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analog circuits ; Animals ; Automatic control ; Automatic gain control ; Computer architecture ; Firing rate ; Gain control ; homeostatic ; Homeostatic plasticity ; Humans ; intrinsic plasticity ; Leakage ; Leakage current ; Leakage currents ; Logic gates ; long-term depression (LTD) ; long-term potentiation (LTP) ; Metal oxides ; Neural networks ; Neuromorphic ; Neuromorphics ; Neuronal Plasticity - physiology ; Neurons - physiology ; Neuroplasticity ; Plasticity ; Scaling ; Semiconductors ; spike-timing dependent plasticity (STDP) ; spiking neural network (SNN) ; Stability ; Synapses ; Synapses - physiology ; Synaptic plasticity ; Synaptic strength ; Time</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2017-12, Vol.11 (6), p.1271-1277</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f752939c9145f01fbc369d4453988ad70eab3b6e3a61440f7d2d3027a010abf3</citedby><cites>FETCH-LOGICAL-c400t-f752939c9145f01fbc369d4453988ad70eab3b6e3a61440f7d2d3027a010abf3</cites><orcidid>0000-0003-0264-5622 ; 0000-0003-3465-6449 ; 0000-0002-7109-1689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8097002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8097002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29293423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning Qiao</creatorcontrib><creatorcontrib>Bartolozzi, Chiara</creatorcontrib><creatorcontrib>Indiveri, Giacomo</creatorcontrib><title>An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Homeostatic plasticity is a stabilizing mechanism commonly observed in real neural systems that allows neurons to maintain their activity around a functional operating point. This phenomenon can be used in neuromorphic systems to compensate for slowly changing conditions or chronic shifts in the system configuration. However, to avoid interference with other adaptation or learning processes active in the neuromorphic system, it is important that the homeostatic plasticity mechanism operates on time scales that are much longer than conventional synaptic plasticity ones. In this paper we present an ultralow leakage circuit, integrated into an automatic gain control scheme, that can implement the synaptic scaling homeostatic process over extremely long time scales. Synaptic scaling consists in globally scaling the synaptic weights of all synapses impinging onto a neuron maintaining their relative differences, to preserve the effects of learning. The scheme we propose controls the global gain of analog log-domain synapse circuits to keep the neuron's average firing rate constant around a set operating point, over extremely long time scales. To validate the proposed scheme, we implemented the ultralow leakage synaptic scaling homeostatic plasticity circuit in a standard 0.18 μm complementary metal-oxide-semiconductor process, and integrated it in an array of dynamic synapses connected to an adaptive integrate and fire neuron. The circuit occupies a silicon area of 84 μm × 22 μm and consumes approximately 10.8 nW with a 1.8 V supply voltage. We present experimental results from the homeostatic circuit and demonstrate how it can be configured to exhibit time scales of up to 100 ks, thanks to a controllable leakage current that can be scaled down to 0.45 aA (2.8 electrons per second).</description><subject>Analog circuits</subject><subject>Animals</subject><subject>Automatic control</subject><subject>Automatic gain control</subject><subject>Computer architecture</subject><subject>Firing rate</subject><subject>Gain control</subject><subject>homeostatic</subject><subject>Homeostatic plasticity</subject><subject>Humans</subject><subject>intrinsic plasticity</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>Leakage currents</subject><subject>Logic gates</subject><subject>long-term depression (LTD)</subject><subject>long-term potentiation (LTP)</subject><subject>Metal oxides</subject><subject>Neural networks</subject><subject>Neuromorphic</subject><subject>Neuromorphics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Plasticity</subject><subject>Scaling</subject><subject>Semiconductors</subject><subject>spike-timing dependent plasticity (STDP)</subject><subject>spiking neural network (SNN)</subject><subject>Stability</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic strength</subject><subject>Time</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU2P0zAQhi0EYpfCHwAJWeKyl5TxR-L4WCKWRaoEUos4Wk4yKd5N4mI7Qv33JNuyBy4zo5nnHY3mJeQtgzVjoD_uP1Wb3ZoDU2uucilK8YxcMy0h01rD86UWPJO5zK_IqxjvAfKCa_6SXM1RC8nFNRk3I_3Rp2B7_4du0T7YA9LdabTH5Bq6a2zvxgO98wP6mOzS-97bOGeXTrRyoZlcoj9d-kUrP3buMAVb90j3bsBHNUY6HWnylAHQh_iavOhsH_HNJa_I_vbzvrrLtt--fK0226yRACnrVD4fqBvNZN4B6-pGFLqVMhe6LG2rAG0t6gKFLZiU0KmWtwK4ssDA1p1YkZvz2mPwvyeMyQwuNtj3dkQ_RcN0KXnBi_lpK_LhP_TeT2GcjzOcKSmFKuVC8TPVBB9jwM4cgxtsOBkGZjHDPJphFjPMxYxZ9P6yeqoHbJ8k_74_A-_OgEPEp3EJWgFw8RcrNox9</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ning Qiao</creator><creator>Bartolozzi, Chiara</creator><creator>Indiveri, Giacomo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0264-5622</orcidid><orcidid>https://orcid.org/0000-0003-3465-6449</orcidid><orcidid>https://orcid.org/0000-0002-7109-1689</orcidid></search><sort><creationdate>20171201</creationdate><title>An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks</title><author>Ning Qiao ; Bartolozzi, Chiara ; Indiveri, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f752939c9145f01fbc369d4453988ad70eab3b6e3a61440f7d2d3027a010abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analog circuits</topic><topic>Animals</topic><topic>Automatic control</topic><topic>Automatic gain control</topic><topic>Computer architecture</topic><topic>Firing rate</topic><topic>Gain control</topic><topic>homeostatic</topic><topic>Homeostatic plasticity</topic><topic>Humans</topic><topic>intrinsic plasticity</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>Leakage currents</topic><topic>Logic gates</topic><topic>long-term depression (LTD)</topic><topic>long-term potentiation (LTP)</topic><topic>Metal oxides</topic><topic>Neural networks</topic><topic>Neuromorphic</topic><topic>Neuromorphics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Plasticity</topic><topic>Scaling</topic><topic>Semiconductors</topic><topic>spike-timing dependent plasticity (STDP)</topic><topic>spiking neural network (SNN)</topic><topic>Stability</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic strength</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning Qiao</creatorcontrib><creatorcontrib>Bartolozzi, Chiara</creatorcontrib><creatorcontrib>Indiveri, Giacomo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning Qiao</au><au>Bartolozzi, Chiara</au><au>Indiveri, Giacomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>1271</spage><epage>1277</epage><pages>1271-1277</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Homeostatic plasticity is a stabilizing mechanism commonly observed in real neural systems that allows neurons to maintain their activity around a functional operating point. This phenomenon can be used in neuromorphic systems to compensate for slowly changing conditions or chronic shifts in the system configuration. However, to avoid interference with other adaptation or learning processes active in the neuromorphic system, it is important that the homeostatic plasticity mechanism operates on time scales that are much longer than conventional synaptic plasticity ones. In this paper we present an ultralow leakage circuit, integrated into an automatic gain control scheme, that can implement the synaptic scaling homeostatic process over extremely long time scales. Synaptic scaling consists in globally scaling the synaptic weights of all synapses impinging onto a neuron maintaining their relative differences, to preserve the effects of learning. The scheme we propose controls the global gain of analog log-domain synapse circuits to keep the neuron's average firing rate constant around a set operating point, over extremely long time scales. To validate the proposed scheme, we implemented the ultralow leakage synaptic scaling homeostatic plasticity circuit in a standard 0.18 μm complementary metal-oxide-semiconductor process, and integrated it in an array of dynamic synapses connected to an adaptive integrate and fire neuron. The circuit occupies a silicon area of 84 μm × 22 μm and consumes approximately 10.8 nW with a 1.8 V supply voltage. We present experimental results from the homeostatic circuit and demonstrate how it can be configured to exhibit time scales of up to 100 ks, thanks to a controllable leakage current that can be scaled down to 0.45 aA (2.8 electrons per second).</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29293423</pmid><doi>10.1109/TBCAS.2017.2754383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0264-5622</orcidid><orcidid>https://orcid.org/0000-0003-3465-6449</orcidid><orcidid>https://orcid.org/0000-0002-7109-1689</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2017-12, Vol.11 (6), p.1271-1277
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_journals_2174437844
source IEEE Electronic Library (IEL)
subjects Analog circuits
Animals
Automatic control
Automatic gain control
Computer architecture
Firing rate
Gain control
homeostatic
Homeostatic plasticity
Humans
intrinsic plasticity
Leakage
Leakage current
Leakage currents
Logic gates
long-term depression (LTD)
long-term potentiation (LTP)
Metal oxides
Neural networks
Neuromorphic
Neuromorphics
Neuronal Plasticity - physiology
Neurons - physiology
Neuroplasticity
Plasticity
Scaling
Semiconductors
spike-timing dependent plasticity (STDP)
spiking neural network (SNN)
Stability
Synapses
Synapses - physiology
Synaptic plasticity
Synaptic strength
Time
title An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultralow%20Leakage%20Synaptic%20Scaling%20Homeostatic%20Plasticity%20Circuit%20With%20Configurable%20Time%20Scales%20up%20to%20100%20ks&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Ning%20Qiao&rft.date=2017-12-01&rft.volume=11&rft.issue=6&rft.spage=1271&rft.epage=1277&rft.pages=1271-1277&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2017.2754383&rft_dat=%3Cproquest_RIE%3E1984262654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174437844&rft_id=info:pmid/29293423&rft_ieee_id=8097002&rfr_iscdi=true