Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder

As a side effect of increasingly popular social media, cyberbullying has emerged as a serious problem afflicting children, adolescents and young adults. Machine learning techniques make automatic detection of bullying messages in social media possible, and this could help to construct a healthy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2017-07, Vol.8 (3), p.328-339
Hauptverfasser: Zhao, Rui, Mao, Kezhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 3
container_start_page 328
container_title IEEE transactions on affective computing
container_volume 8
creator Zhao, Rui
Mao, Kezhi
description As a side effect of increasingly popular social media, cyberbullying has emerged as a serious problem afflicting children, adolescents and young adults. Machine learning techniques make automatic detection of bullying messages in social media possible, and this could help to construct a healthy and safe social media environment. In this meaningful research area, one critical issue is robust and discriminative numerical representation learning of text messages. In this paper, we propose a new representation learning method to tackle this problem. Our method named semantic-enhanced marginalized denoising auto-encoder (smSDA) is developed via semantic extension of the popular deep learning model stacked denoising autoencoder (SDA). The semantic extension consists of semantic dropout noise and sparsity constraints, where the semantic dropout noise is designed based on domain knowledge and the word embedding technique. Our proposed method is able to exploit the hidden feature structure of bullying information and learn a robust and discriminative representation of text. Comprehensive experiments on two public cyberbullying corpora (Twitter and MySpace) are conducted, and the results show that our proposed approaches outperform other baseline text representation learning methods.
doi_str_mv 10.1109/TAFFC.2016.2531682
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174429561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412690</ieee_id><sourcerecordid>2174429561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-352a4ba186c46edb4a6b80ba6d24a2ab7bcafb75a5813aaa6b240995eeb9e25b3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGEwnyB_RC4rm43-0esYCaaDyIXpvZ7YAlpcXd9oC_3kWIcS7z9T6TyUvINaMTxqi5W04Xi3zCKdMTrgTTGT8jA2akSQSV6vxffUlGIWxoDCGE5umAfOR7i972db2vmvV4hh26rmqb8T0ELMexeMMtNF3lknnzCY2Lwxfw66qBuvqOzQybtgoHdtp3bRS5tkR_RS5WUAccnfKQvC_my_wxeX59eMqnz4kTmnWJUBykBZZpJzWWVoK2GbWgSy6Bg02tg5VNFaiMCYC45ZIaoxCtQa6sGJLb492db796DF2xaXsffwsFZ6mU3CjNooofVc63IXhcFTtfbcHvC0aLg4XFr4XFwcLiZGGEbo5QhYh_QCoZ14aKH0ndbZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174429561</pqid></control><display><type>article</type><title>Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Rui ; Mao, Kezhi</creator><creatorcontrib>Zhao, Rui ; Mao, Kezhi</creatorcontrib><description>As a side effect of increasingly popular social media, cyberbullying has emerged as a serious problem afflicting children, adolescents and young adults. Machine learning techniques make automatic detection of bullying messages in social media possible, and this could help to construct a healthy and safe social media environment. In this meaningful research area, one critical issue is robust and discriminative numerical representation learning of text messages. In this paper, we propose a new representation learning method to tackle this problem. Our method named semantic-enhanced marginalized denoising auto-encoder (smSDA) is developed via semantic extension of the popular deep learning model stacked denoising autoencoder (SDA). The semantic extension consists of semantic dropout noise and sparsity constraints, where the semantic dropout noise is designed based on domain knowledge and the word embedding technique. Our proposed method is able to exploit the hidden feature structure of bullying information and learn a robust and discriminative representation of text. Comprehensive experiments on two public cyberbullying corpora (Twitter and MySpace) are conducted, and the results show that our proposed approaches outperform other baseline text representation learning methods.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2016.2531682</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adolescents ; Adults ; Analytical models ; Bullying ; Children ; Cyberbullying ; Cyberbullying detection ; Digital media ; Feature extraction ; Machine learning ; Mathematical models ; Media ; Messages ; Noise reduction ; Numerical models ; representation learning ; Representations ; Robustness ; Robustness (mathematics) ; Semantics ; Short message service ; Social networks ; stacked denoising autoencoders ; Teaching methods ; text mining ; word embedding</subject><ispartof>IEEE transactions on affective computing, 2017-07, Vol.8 (3), p.328-339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-352a4ba186c46edb4a6b80ba6d24a2ab7bcafb75a5813aaa6b240995eeb9e25b3</citedby><cites>FETCH-LOGICAL-c361t-352a4ba186c46edb4a6b80ba6d24a2ab7bcafb75a5813aaa6b240995eeb9e25b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7412690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Rui</creatorcontrib><creatorcontrib>Mao, Kezhi</creatorcontrib><title>Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>As a side effect of increasingly popular social media, cyberbullying has emerged as a serious problem afflicting children, adolescents and young adults. Machine learning techniques make automatic detection of bullying messages in social media possible, and this could help to construct a healthy and safe social media environment. In this meaningful research area, one critical issue is robust and discriminative numerical representation learning of text messages. In this paper, we propose a new representation learning method to tackle this problem. Our method named semantic-enhanced marginalized denoising auto-encoder (smSDA) is developed via semantic extension of the popular deep learning model stacked denoising autoencoder (SDA). The semantic extension consists of semantic dropout noise and sparsity constraints, where the semantic dropout noise is designed based on domain knowledge and the word embedding technique. Our proposed method is able to exploit the hidden feature structure of bullying information and learn a robust and discriminative representation of text. Comprehensive experiments on two public cyberbullying corpora (Twitter and MySpace) are conducted, and the results show that our proposed approaches outperform other baseline text representation learning methods.</description><subject>Adolescents</subject><subject>Adults</subject><subject>Analytical models</subject><subject>Bullying</subject><subject>Children</subject><subject>Cyberbullying</subject><subject>Cyberbullying detection</subject><subject>Digital media</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Messages</subject><subject>Noise reduction</subject><subject>Numerical models</subject><subject>representation learning</subject><subject>Representations</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Semantics</subject><subject>Short message service</subject><subject>Social networks</subject><subject>stacked denoising autoencoders</subject><subject>Teaching methods</subject><subject>text mining</subject><subject>word embedding</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGEwnyB_RC4rm43-0esYCaaDyIXpvZ7YAlpcXd9oC_3kWIcS7z9T6TyUvINaMTxqi5W04Xi3zCKdMTrgTTGT8jA2akSQSV6vxffUlGIWxoDCGE5umAfOR7i972db2vmvV4hh26rmqb8T0ELMexeMMtNF3lknnzCY2Lwxfw66qBuvqOzQybtgoHdtp3bRS5tkR_RS5WUAccnfKQvC_my_wxeX59eMqnz4kTmnWJUBykBZZpJzWWVoK2GbWgSy6Bg02tg5VNFaiMCYC45ZIaoxCtQa6sGJLb492db796DF2xaXsffwsFZ6mU3CjNooofVc63IXhcFTtfbcHvC0aLg4XFr4XFwcLiZGGEbo5QhYh_QCoZ14aKH0ndbZs</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zhao, Rui</creator><creator>Mao, Kezhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder</title><author>Zhao, Rui ; Mao, Kezhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-352a4ba186c46edb4a6b80ba6d24a2ab7bcafb75a5813aaa6b240995eeb9e25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescents</topic><topic>Adults</topic><topic>Analytical models</topic><topic>Bullying</topic><topic>Children</topic><topic>Cyberbullying</topic><topic>Cyberbullying detection</topic><topic>Digital media</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Messages</topic><topic>Noise reduction</topic><topic>Numerical models</topic><topic>representation learning</topic><topic>Representations</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Semantics</topic><topic>Short message service</topic><topic>Social networks</topic><topic>stacked denoising autoencoders</topic><topic>Teaching methods</topic><topic>text mining</topic><topic>word embedding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Rui</creatorcontrib><creatorcontrib>Mao, Kezhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Rui</au><au>Mao, Kezhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>8</volume><issue>3</issue><spage>328</spage><epage>339</epage><pages>328-339</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>As a side effect of increasingly popular social media, cyberbullying has emerged as a serious problem afflicting children, adolescents and young adults. Machine learning techniques make automatic detection of bullying messages in social media possible, and this could help to construct a healthy and safe social media environment. In this meaningful research area, one critical issue is robust and discriminative numerical representation learning of text messages. In this paper, we propose a new representation learning method to tackle this problem. Our method named semantic-enhanced marginalized denoising auto-encoder (smSDA) is developed via semantic extension of the popular deep learning model stacked denoising autoencoder (SDA). The semantic extension consists of semantic dropout noise and sparsity constraints, where the semantic dropout noise is designed based on domain knowledge and the word embedding technique. Our proposed method is able to exploit the hidden feature structure of bullying information and learn a robust and discriminative representation of text. Comprehensive experiments on two public cyberbullying corpora (Twitter and MySpace) are conducted, and the results show that our proposed approaches outperform other baseline text representation learning methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2016.2531682</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2017-07, Vol.8 (3), p.328-339
issn 1949-3045
1949-3045
language eng
recordid cdi_proquest_journals_2174429561
source IEEE Electronic Library (IEL)
subjects Adolescents
Adults
Analytical models
Bullying
Children
Cyberbullying
Cyberbullying detection
Digital media
Feature extraction
Machine learning
Mathematical models
Media
Messages
Noise reduction
Numerical models
representation learning
Representations
Robustness
Robustness (mathematics)
Semantics
Short message service
Social networks
stacked denoising autoencoders
Teaching methods
text mining
word embedding
title Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyberbullying%20Detection%20Based%20on%20Semantic-Enhanced%20Marginalized%20Denoising%20Auto-Encoder&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Zhao,%20Rui&rft.date=2017-07-01&rft.volume=8&rft.issue=3&rft.spage=328&rft.epage=339&rft.pages=328-339&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2016.2531682&rft_dat=%3Cproquest_RIE%3E2174429561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174429561&rft_id=info:pmid/&rft_ieee_id=7412690&rfr_iscdi=true