Application of the full Bayesian significance test to model selection under informative sampling

Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. Thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2019-02, Vol.60 (1), p.89-104
Hauptverfasser: Sikov, A., Stern, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 89
container_title Statistical papers (Berlin, Germany)
container_volume 60
creator Sikov, A.
Stern, J. M.
description Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.
doi_str_mv 10.1007/s00362-016-0828-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174418704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174418704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRxDn9AN5IPKMvlAI9zsV_yRIvekbWwuzSQoXWbN9edCaePHH5Pc9LHoQuKVxTAHmTAArBCFBBQDFFdkdoRgUtSCUrdYxmUBWMlMDEKTpLaQtAlVIwQ2-LYeja2oxt8Dg4PL5b7Kauw7dmb1NrPE7txrcuT3xt8WjTiMeA-9DYDifb2fqHnHxjI269C7HPrk-Lk-mz2G_O0YkzXbIXv-8cvd7fvSwfyer54Wm5WJG64NVICsHXFGouqLSykaVqREkNawplwFnGoFRrwUrmKkdLoUBKcMCFc5TWqubrYo6uDt4hho8pf1NvwxR9PqkZlZxTJYHnFT2s6hhSitbpIba9iXtNQX-H1IeQOofU3yH1LjPswKS89Rsb_8z_Q1_Mb3am</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174418704</pqid></control><display><type>article</type><title>Application of the full Bayesian significance test to model selection under informative sampling</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sikov, A. ; Stern, J. M.</creator><creatorcontrib>Sikov, A. ; Stern, J. M.</creatorcontrib><description>Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-016-0828-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Computer simulation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Model testing ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regular Article ; Sampling ; Statistical significance ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2019-02, Vol.60 (1), p.89-104</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Statistical Papers is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</citedby><cites>FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</cites><orcidid>0000-0001-9869-5952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-016-0828-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-016-0828-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Sikov, A.</creatorcontrib><creatorcontrib>Stern, J. M.</creatorcontrib><title>Application of the full Bayesian significance test to model selection under informative sampling</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Model testing</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Sampling</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwyAYh4nRxDn9AN5IPKMvlAI9zsV_yRIvekbWwuzSQoXWbN9edCaePHH5Pc9LHoQuKVxTAHmTAArBCFBBQDFFdkdoRgUtSCUrdYxmUBWMlMDEKTpLaQtAlVIwQ2-LYeja2oxt8Dg4PL5b7Kauw7dmb1NrPE7txrcuT3xt8WjTiMeA-9DYDifb2fqHnHxjI269C7HPrk-Lk-mz2G_O0YkzXbIXv-8cvd7fvSwfyer54Wm5WJG64NVICsHXFGouqLSykaVqREkNawplwFnGoFRrwUrmKkdLoUBKcMCFc5TWqubrYo6uDt4hho8pf1NvwxR9PqkZlZxTJYHnFT2s6hhSitbpIba9iXtNQX-H1IeQOofU3yH1LjPswKS89Rsb_8z_Q1_Mb3am</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sikov, A.</creator><creator>Stern, J. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9869-5952</orcidid></search><sort><creationdate>20190201</creationdate><title>Application of the full Bayesian significance test to model selection under informative sampling</title><author>Sikov, A. ; Stern, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Model testing</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Sampling</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikov, A.</creatorcontrib><creatorcontrib>Stern, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikov, A.</au><au>Stern, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the full Bayesian significance test to model selection under informative sampling</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><spage>89</spage><epage>104</epage><pages>89-104</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-016-0828-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9869-5952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2019-02, Vol.60 (1), p.89-104
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2174418704
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Computer simulation
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Model testing
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Regular Article
Sampling
Statistical significance
Statistics
Statistics for Business
title Application of the full Bayesian significance test to model selection under informative sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20full%20Bayesian%20significance%20test%20to%20model%20selection%20under%20informative%20sampling&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Sikov,%20A.&rft.date=2019-02-01&rft.volume=60&rft.issue=1&rft.spage=89&rft.epage=104&rft.pages=89-104&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-016-0828-x&rft_dat=%3Cproquest_cross%3E2174418704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174418704&rft_id=info:pmid/&rfr_iscdi=true