Application of the full Bayesian significance test to model selection under informative sampling
Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. Thes...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2019-02, Vol.60 (1), p.89-104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 60 |
creator | Sikov, A. Stern, J. M. |
description | Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study. |
doi_str_mv | 10.1007/s00362-016-0828-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174418704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174418704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</originalsourceid><addsrcrecordid>eNp1kE9PwyAYh4nRxDn9AN5IPKMvlAI9zsV_yRIvekbWwuzSQoXWbN9edCaePHH5Pc9LHoQuKVxTAHmTAArBCFBBQDFFdkdoRgUtSCUrdYxmUBWMlMDEKTpLaQtAlVIwQ2-LYeja2oxt8Dg4PL5b7Kauw7dmb1NrPE7txrcuT3xt8WjTiMeA-9DYDifb2fqHnHxjI269C7HPrk-Lk-mz2G_O0YkzXbIXv-8cvd7fvSwfyer54Wm5WJG64NVICsHXFGouqLSykaVqREkNawplwFnGoFRrwUrmKkdLoUBKcMCFc5TWqubrYo6uDt4hho8pf1NvwxR9PqkZlZxTJYHnFT2s6hhSitbpIba9iXtNQX-H1IeQOofU3yH1LjPswKS89Rsb_8z_Q1_Mb3am</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174418704</pqid></control><display><type>article</type><title>Application of the full Bayesian significance test to model selection under informative sampling</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sikov, A. ; Stern, J. M.</creator><creatorcontrib>Sikov, A. ; Stern, J. M.</creatorcontrib><description>Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-016-0828-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Computer simulation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Model testing ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Regular Article ; Sampling ; Statistical significance ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2019-02, Vol.60 (1), p.89-104</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Statistical Papers is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</citedby><cites>FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</cites><orcidid>0000-0001-9869-5952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-016-0828-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-016-0828-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Sikov, A.</creatorcontrib><creatorcontrib>Stern, J. M.</creatorcontrib><title>Application of the full Bayesian significance test to model selection under informative sampling</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Model testing</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Sampling</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwyAYh4nRxDn9AN5IPKMvlAI9zsV_yRIvekbWwuzSQoXWbN9edCaePHH5Pc9LHoQuKVxTAHmTAArBCFBBQDFFdkdoRgUtSCUrdYxmUBWMlMDEKTpLaQtAlVIwQ2-LYeja2oxt8Dg4PL5b7Kauw7dmb1NrPE7txrcuT3xt8WjTiMeA-9DYDifb2fqHnHxjI269C7HPrk-Lk-mz2G_O0YkzXbIXv-8cvd7fvSwfyer54Wm5WJG64NVICsHXFGouqLSykaVqREkNawplwFnGoFRrwUrmKkdLoUBKcMCFc5TWqubrYo6uDt4hho8pf1NvwxR9PqkZlZxTJYHnFT2s6hhSitbpIba9iXtNQX-H1IeQOofU3yH1LjPswKS89Rsb_8z_Q1_Mb3am</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sikov, A.</creator><creator>Stern, J. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9869-5952</orcidid></search><sort><creationdate>20190201</creationdate><title>Application of the full Bayesian significance test to model selection under informative sampling</title><author>Sikov, A. ; Stern, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-364b10c4617e7d758d651a2d38a0fe22058b6252f9f15680770f046ff11c8c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Model testing</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Sampling</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikov, A.</creatorcontrib><creatorcontrib>Stern, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikov, A.</au><au>Stern, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the full Bayesian significance test to model selection under informative sampling</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><spage>89</spage><epage>104</epage><pages>89-104</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Adopting likelihood based methods of inference in the case of informative sampling often presents a number of difficulties, particularly, if the parametric form of the model that describes the sample selection mechanism is unknown, and thus requires application of some model selection approach. These difficulties generally arise either due to complexity of the model holding in the sample, or due to identifiability problems. As a remedy we propose alternative approach to model selection and estimation in the case of informative sampling. Our approach is based on weighted estimation equations, where the contribution to the estimation equation from each observation is weighted by the inverse probability of being selected. We show how weighted estimation equations can be incorporated in a Bayesian analysis, and how the full Bayesian significance test can be implemented as a model selection tool. We illustrate the efficiency of the proposed methodology by a simulation study.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-016-0828-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9869-5952</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2019-02, Vol.60 (1), p.89-104 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_2174418704 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Bayesian analysis Computer simulation Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Model testing Operations Research/Decision Theory Probability Theory and Stochastic Processes Regular Article Sampling Statistical significance Statistics Statistics for Business |
title | Application of the full Bayesian significance test to model selection under informative sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20full%20Bayesian%20significance%20test%20to%20model%20selection%20under%20informative%20sampling&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Sikov,%20A.&rft.date=2019-02-01&rft.volume=60&rft.issue=1&rft.spage=89&rft.epage=104&rft.pages=89-104&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-016-0828-x&rft_dat=%3Cproquest_cross%3E2174418704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174418704&rft_id=info:pmid/&rfr_iscdi=true |