Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model

We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2017-02, Vol.36 (2), p.527-537
Hauptverfasser: Liu, Fang, Velikina, Julia V., Block, Walter F., Kijowski, Richard, Samsonov, Alexey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 2
container_start_page 527
container_title IEEE transactions on medical imaging
container_volume 36
creator Liu, Fang
Velikina, Julia V.
Block, Walter F.
Kijowski, Richard
Samsonov, Alexey A.
description We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ~ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
doi_str_mv 10.1109/TMI.2016.2620961
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174413624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7676360</ieee_id><sourcerecordid>1861615023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-d055d93ec7afb1778371138343c8587f2811f5c5d0f06a8067d78188da35e7653</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoModq3eC4IEvPFm1nOSycfcCFr6sdBFabfgXUhnzrQps5M6mSnVX98suy7qVQjnOS_v4WHsLcIcEapPq-ViLgD1XGgBlcZnbIZK2UKo8sdzNgNhbAGgxQF7ldIdAJYKqpfsQFhEaUo9Y6sTn0Z-Qb4LaQw1X14s-GVYT50fQ-wT_-oTNTz2_JR6GjL1O3-XUzeG4nuMHT9-rG99f0N8FVKaiC9jQ91r9qL1XaI3u_eQXZ0cr47OivNvp4ujL-dFrRDGogGlmkpSbXx7jcZYaXItK0tZW2VNu2nZqlo10IL2FrRpjEVrGy8VGa3kIfu8zb2frtfU1NSPuaK7H8LaD79c9MH9O-nDrbuJD05JISpb5oCPu4Ah_pwojW4dUk1d53uKU3JoNWpUIGRGP_yH3sVp6PN5TqApS5RabAJhS9VDTGmgdl8GwW2UuazMbZS5nbK88v7vI_YLfxxl4N0WCES0HxtttNQgnwDM85kJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174413624</pqid></control><display><type>article</type><title>Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model</title><source>IEEE Electronic Library Online</source><creator>Liu, Fang ; Velikina, Julia V. ; Block, Walter F. ; Kijowski, Richard ; Samsonov, Alexey A.</creator><creatorcontrib>Liu, Fang ; Velikina, Julia V. ; Block, Walter F. ; Kijowski, Richard ; Samsonov, Alexey A.</creatorcontrib><description>We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ~ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2620961</identifier><identifier>PMID: 28113746</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Brain modeling ; CEST ; Composition ; Computation ; Computational modeling ; Computer applications ; Computer Graphics ; Computer Simulation ; Exchanging ; graphical processing unit (GPU) ; Graphics processing units ; Macromolecules ; Magnetic Resonance Imaging ; Magnetization ; magnetization transfer ; Microstructure ; Parallel processing ; Personal computers ; Protons ; relaxometry ; simulation ; Simulators ; Three dimensional models ; Tissues ; Virtual environments</subject><ispartof>IEEE transactions on medical imaging, 2017-02, Vol.36 (2), p.527-537</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-d055d93ec7afb1778371138343c8587f2811f5c5d0f06a8067d78188da35e7653</citedby><cites>FETCH-LOGICAL-c510t-d055d93ec7afb1778371138343c8587f2811f5c5d0f06a8067d78188da35e7653</cites><orcidid>0000-0001-8032-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7676360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7676360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28113746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Velikina, Julia V.</creatorcontrib><creatorcontrib>Block, Walter F.</creatorcontrib><creatorcontrib>Kijowski, Richard</creatorcontrib><creatorcontrib>Samsonov, Alexey A.</creatorcontrib><title>Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ~ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.</description><subject>Biological system modeling</subject><subject>Brain modeling</subject><subject>CEST</subject><subject>Composition</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Exchanging</subject><subject>graphical processing unit (GPU)</subject><subject>Graphics processing units</subject><subject>Macromolecules</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetization</subject><subject>magnetization transfer</subject><subject>Microstructure</subject><subject>Parallel processing</subject><subject>Personal computers</subject><subject>Protons</subject><subject>relaxometry</subject><subject>simulation</subject><subject>Simulators</subject><subject>Three dimensional models</subject><subject>Tissues</subject><subject>Virtual environments</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV1rFDEUhoModq3eC4IEvPFm1nOSycfcCFr6sdBFabfgXUhnzrQps5M6mSnVX98suy7qVQjnOS_v4WHsLcIcEapPq-ViLgD1XGgBlcZnbIZK2UKo8sdzNgNhbAGgxQF7ldIdAJYKqpfsQFhEaUo9Y6sTn0Z-Qb4LaQw1X14s-GVYT50fQ-wT_-oTNTz2_JR6GjL1O3-XUzeG4nuMHT9-rG99f0N8FVKaiC9jQ91r9qL1XaI3u_eQXZ0cr47OivNvp4ujL-dFrRDGogGlmkpSbXx7jcZYaXItK0tZW2VNu2nZqlo10IL2FrRpjEVrGy8VGa3kIfu8zb2frtfU1NSPuaK7H8LaD79c9MH9O-nDrbuJD05JISpb5oCPu4Ah_pwojW4dUk1d53uKU3JoNWpUIGRGP_yH3sVp6PN5TqApS5RabAJhS9VDTGmgdl8GwW2UuazMbZS5nbK88v7vI_YLfxxl4N0WCES0HxtttNQgnwDM85kJ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Liu, Fang</creator><creator>Velikina, Julia V.</creator><creator>Block, Walter F.</creator><creator>Kijowski, Richard</creator><creator>Samsonov, Alexey A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8032-6681</orcidid></search><sort><creationdate>20170201</creationdate><title>Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model</title><author>Liu, Fang ; Velikina, Julia V. ; Block, Walter F. ; Kijowski, Richard ; Samsonov, Alexey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-d055d93ec7afb1778371138343c8587f2811f5c5d0f06a8067d78188da35e7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological system modeling</topic><topic>Brain modeling</topic><topic>CEST</topic><topic>Composition</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Exchanging</topic><topic>graphical processing unit (GPU)</topic><topic>Graphics processing units</topic><topic>Macromolecules</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetization</topic><topic>magnetization transfer</topic><topic>Microstructure</topic><topic>Parallel processing</topic><topic>Personal computers</topic><topic>Protons</topic><topic>relaxometry</topic><topic>simulation</topic><topic>Simulators</topic><topic>Three dimensional models</topic><topic>Tissues</topic><topic>Virtual environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Velikina, Julia V.</creatorcontrib><creatorcontrib>Block, Walter F.</creatorcontrib><creatorcontrib>Kijowski, Richard</creatorcontrib><creatorcontrib>Samsonov, Alexey A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Fang</au><au>Velikina, Julia V.</au><au>Block, Walter F.</au><au>Kijowski, Richard</au><au>Samsonov, Alexey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>36</volume><issue>2</issue><spage>527</spage><epage>537</epage><pages>527-537</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ~ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28113746</pmid><doi>10.1109/TMI.2016.2620961</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8032-6681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2017-02, Vol.36 (2), p.527-537
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2174413624
source IEEE Electronic Library Online
subjects Biological system modeling
Brain modeling
CEST
Composition
Computation
Computational modeling
Computer applications
Computer Graphics
Computer Simulation
Exchanging
graphical processing unit (GPU)
Graphics processing units
Macromolecules
Magnetic Resonance Imaging
Magnetization
magnetization transfer
Microstructure
Parallel processing
Personal computers
Protons
relaxometry
simulation
Simulators
Three dimensional models
Tissues
Virtual environments
title Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Realistic%20MRI%20Simulations%20Based%20on%20Generalized%20Multi-Pool%20Exchange%20Tissue%20Model&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Liu,%20Fang&rft.date=2017-02-01&rft.volume=36&rft.issue=2&rft.spage=527&rft.epage=537&rft.pages=527-537&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2620961&rft_dat=%3Cproquest_RIE%3E1861615023%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174413624&rft_id=info:pmid/28113746&rft_ieee_id=7676360&rfr_iscdi=true