A linearised model for calculating inertial forces on a particle in the presence of a permeate flow
Understanding particle transport and localisation in porous channels, especially at moderate Reynolds numbers, is relevant for many applications ranging from water reclamation to biological studies. Recently, researchers experimentally demonstrated that the interplay between axial and permeate flow...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-02, Vol.861, p.253-274 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | |
container_start_page | 253 |
container_title | Journal of fluid mechanics |
container_volume | 861 |
creator | Garcia, Mike Ganapathysubramanian, B. Pennathur, S. |
description | Understanding particle transport and localisation in porous channels, especially at moderate Reynolds numbers, is relevant for many applications ranging from water reclamation to biological studies. Recently, researchers experimentally demonstrated that the interplay between axial and permeate flow in a porous microchannel results in a wide range of focusing positions of finite-sized particles (Garcia & Pennathur, Phys. Rev. Fluids, vol. 2 (4), 2017, 042201). We numerically explore this interplay by computing the lateral forces on a neutrally buoyant spherical particle that is subject to both inertial and permeate forces over a range of experimentally relevant particle sizes and channel Reynolds numbers. Interestingly, we show that the lateral forces on the particle are well represented using a linearised model across a range of permeate-to-axial flow rate ratios. Specifically, our model linearises the effects of the permeate flow, which suggests that the interplay between axial and permeate flow on the lateral force on a particle can be represented as a superposition between the lateral (inertial) forces in pure axial flow and the viscous forces in pure permeate flow. We experimentally validate this observation for a range of flow conditions. The linearised behaviour observed significantly reduces the complexity and time required to predict the migration of inertial particles in permeate channels. |
doi_str_mv | 10.1017/jfm.2018.843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174401447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_843</cupid><sourcerecordid>2174401447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fa1f2226e267715ac4ac7c328b243f039418d75b0a7d83c85c1b532d1b5c02453</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AEBr7ZmkrRpj8viFyx40XNI08napW1q0kX892Z1wYuXGZjnnRl4CLkGlgMDdbdzQ84ZVHklxQlZgCzrTJWyOCULxjjPADg7Jxcx7hgDwWq1IHZF-25EE7qILR18iz11PlBrervvzdyNW5p4mDvzAyxG6kdq6GTSzPaYKJ3fkU4BI44WqXcHimFAMyN1vf-8JGfO9BGvjn1J3h7uX9dP2ebl8Xm92mRWiHrOnAHHOS-Rl0pBYaw0VlnBq4ZL4ZioJVStKhpmVFsJWxUWmkLwNlXLuCzEktz83p2C_9hjnPXO78OYXmoOSkoGUqqUuv1N2eBjDOj0FLrBhC8NTB806qRRHzTqpDHF82PcDE3o2i3-Xf134Rv-UXQS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174401447</pqid></control><display><type>article</type><title>A linearised model for calculating inertial forces on a particle in the presence of a permeate flow</title><source>Cambridge University Press Journals Complete</source><creator>Garcia, Mike ; Ganapathysubramanian, B. ; Pennathur, S.</creator><creatorcontrib>Garcia, Mike ; Ganapathysubramanian, B. ; Pennathur, S.</creatorcontrib><description>Understanding particle transport and localisation in porous channels, especially at moderate Reynolds numbers, is relevant for many applications ranging from water reclamation to biological studies. Recently, researchers experimentally demonstrated that the interplay between axial and permeate flow in a porous microchannel results in a wide range of focusing positions of finite-sized particles (Garcia & Pennathur, Phys. Rev. Fluids, vol. 2 (4), 2017, 042201). We numerically explore this interplay by computing the lateral forces on a neutrally buoyant spherical particle that is subject to both inertial and permeate forces over a range of experimentally relevant particle sizes and channel Reynolds numbers. Interestingly, we show that the lateral forces on the particle are well represented using a linearised model across a range of permeate-to-axial flow rate ratios. Specifically, our model linearises the effects of the permeate flow, which suggests that the interplay between axial and permeate flow on the lateral force on a particle can be represented as a superposition between the lateral (inertial) forces in pure axial flow and the viscous forces in pure permeate flow. We experimentally validate this observation for a range of flow conditions. The linearised behaviour observed significantly reduces the complexity and time required to predict the migration of inertial particles in permeate channels.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.843</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Axial flow ; Boundary conditions ; Channels ; Computational fluid dynamics ; Equilibrium ; Flow rates ; Flow velocity ; Fluid mechanics ; Fluids ; Inertia ; JFM Papers ; Linearization ; Mathematical models ; Microchannels ; Migration ; Ordinary differential equations ; Particle size ; Physics ; Porous materials ; Pressure distribution ; Ratios ; Reclamation ; Researchers ; Reynolds number ; Sediment transport ; Superposition (mathematics) ; Velocity ; Water reclamation</subject><ispartof>Journal of fluid mechanics, 2019-02, Vol.861, p.253-274</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fa1f2226e267715ac4ac7c328b243f039418d75b0a7d83c85c1b532d1b5c02453</citedby><cites>FETCH-LOGICAL-c339t-fa1f2226e267715ac4ac7c328b243f039418d75b0a7d83c85c1b532d1b5c02453</cites><orcidid>0000-0003-2227-4005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018008431/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Garcia, Mike</creatorcontrib><creatorcontrib>Ganapathysubramanian, B.</creatorcontrib><creatorcontrib>Pennathur, S.</creatorcontrib><title>A linearised model for calculating inertial forces on a particle in the presence of a permeate flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Understanding particle transport and localisation in porous channels, especially at moderate Reynolds numbers, is relevant for many applications ranging from water reclamation to biological studies. Recently, researchers experimentally demonstrated that the interplay between axial and permeate flow in a porous microchannel results in a wide range of focusing positions of finite-sized particles (Garcia & Pennathur, Phys. Rev. Fluids, vol. 2 (4), 2017, 042201). We numerically explore this interplay by computing the lateral forces on a neutrally buoyant spherical particle that is subject to both inertial and permeate forces over a range of experimentally relevant particle sizes and channel Reynolds numbers. Interestingly, we show that the lateral forces on the particle are well represented using a linearised model across a range of permeate-to-axial flow rate ratios. Specifically, our model linearises the effects of the permeate flow, which suggests that the interplay between axial and permeate flow on the lateral force on a particle can be represented as a superposition between the lateral (inertial) forces in pure axial flow and the viscous forces in pure permeate flow. We experimentally validate this observation for a range of flow conditions. The linearised behaviour observed significantly reduces the complexity and time required to predict the migration of inertial particles in permeate channels.</description><subject>Axial flow</subject><subject>Boundary conditions</subject><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Equilibrium</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Inertia</subject><subject>JFM Papers</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Migration</subject><subject>Ordinary differential equations</subject><subject>Particle size</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Pressure distribution</subject><subject>Ratios</subject><subject>Reclamation</subject><subject>Researchers</subject><subject>Reynolds number</subject><subject>Sediment transport</subject><subject>Superposition (mathematics)</subject><subject>Velocity</subject><subject>Water reclamation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AEBr7ZmkrRpj8viFyx40XNI08napW1q0kX892Z1wYuXGZjnnRl4CLkGlgMDdbdzQ84ZVHklxQlZgCzrTJWyOCULxjjPADg7Jxcx7hgDwWq1IHZF-25EE7qILR18iz11PlBrervvzdyNW5p4mDvzAyxG6kdq6GTSzPaYKJ3fkU4BI44WqXcHimFAMyN1vf-8JGfO9BGvjn1J3h7uX9dP2ebl8Xm92mRWiHrOnAHHOS-Rl0pBYaw0VlnBq4ZL4ZioJVStKhpmVFsJWxUWmkLwNlXLuCzEktz83p2C_9hjnPXO78OYXmoOSkoGUqqUuv1N2eBjDOj0FLrBhC8NTB806qRRHzTqpDHF82PcDE3o2i3-Xf134Rv-UXQS</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Garcia, Mike</creator><creator>Ganapathysubramanian, B.</creator><creator>Pennathur, S.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2227-4005</orcidid></search><sort><creationdate>20190225</creationdate><title>A linearised model for calculating inertial forces on a particle in the presence of a permeate flow</title><author>Garcia, Mike ; Ganapathysubramanian, B. ; Pennathur, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fa1f2226e267715ac4ac7c328b243f039418d75b0a7d83c85c1b532d1b5c02453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axial flow</topic><topic>Boundary conditions</topic><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Equilibrium</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Inertia</topic><topic>JFM Papers</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Migration</topic><topic>Ordinary differential equations</topic><topic>Particle size</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Pressure distribution</topic><topic>Ratios</topic><topic>Reclamation</topic><topic>Researchers</topic><topic>Reynolds number</topic><topic>Sediment transport</topic><topic>Superposition (mathematics)</topic><topic>Velocity</topic><topic>Water reclamation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Mike</creatorcontrib><creatorcontrib>Ganapathysubramanian, B.</creatorcontrib><creatorcontrib>Pennathur, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Mike</au><au>Ganapathysubramanian, B.</au><au>Pennathur, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linearised model for calculating inertial forces on a particle in the presence of a permeate flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-02-25</date><risdate>2019</risdate><volume>861</volume><spage>253</spage><epage>274</epage><pages>253-274</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Understanding particle transport and localisation in porous channels, especially at moderate Reynolds numbers, is relevant for many applications ranging from water reclamation to biological studies. Recently, researchers experimentally demonstrated that the interplay between axial and permeate flow in a porous microchannel results in a wide range of focusing positions of finite-sized particles (Garcia & Pennathur, Phys. Rev. Fluids, vol. 2 (4), 2017, 042201). We numerically explore this interplay by computing the lateral forces on a neutrally buoyant spherical particle that is subject to both inertial and permeate forces over a range of experimentally relevant particle sizes and channel Reynolds numbers. Interestingly, we show that the lateral forces on the particle are well represented using a linearised model across a range of permeate-to-axial flow rate ratios. Specifically, our model linearises the effects of the permeate flow, which suggests that the interplay between axial and permeate flow on the lateral force on a particle can be represented as a superposition between the lateral (inertial) forces in pure axial flow and the viscous forces in pure permeate flow. We experimentally validate this observation for a range of flow conditions. The linearised behaviour observed significantly reduces the complexity and time required to predict the migration of inertial particles in permeate channels.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.843</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2227-4005</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-02, Vol.861, p.253-274 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2174401447 |
source | Cambridge University Press Journals Complete |
subjects | Axial flow Boundary conditions Channels Computational fluid dynamics Equilibrium Flow rates Flow velocity Fluid mechanics Fluids Inertia JFM Papers Linearization Mathematical models Microchannels Migration Ordinary differential equations Particle size Physics Porous materials Pressure distribution Ratios Reclamation Researchers Reynolds number Sediment transport Superposition (mathematics) Velocity Water reclamation |
title | A linearised model for calculating inertial forces on a particle in the presence of a permeate flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linearised%20model%20for%20calculating%20inertial%20forces%20on%20a%20particle%20in%20the%20presence%20of%20a%20permeate%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Garcia,%20Mike&rft.date=2019-02-25&rft.volume=861&rft.spage=253&rft.epage=274&rft.pages=253-274&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.843&rft_dat=%3Cproquest_cross%3E2174401447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174401447&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_843&rfr_iscdi=true |