Slow viscous flow of two porous spherical particles translating along the axis of a cylinder
We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-02, Vol.861, p.643-678 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | |
container_start_page | 643 |
container_title | Journal of fluid mechanics |
container_volume | 861 |
creator | Yao, Xin Ng, Chyi Huey Teo, Jia Rui Amanda Wong, Teck Neng |
description | We describe the motion of two freely moving porous spherical particles
located along the axis of a cylindrical tube with background Poiseuille flow
at low Reynolds number. The stream function and a framework based on
cylindrical harmonics are adopted to solve the flow field around the
particles and the flow within the tube, respectively. The two solutions are
employed in an iterated framework using the method of reflections. We first
consider the case of two identical particles, followed by two particles with
different dimensions. In both cases, the drag force coefficients of the
particles are solved as functions of the separation distance between the
particles and the permeability of the particles. The detailed flow field in
the vicinity of the two particles is investigated by plotting the
streamlines and velocity contours. We find that the particle–particle
interaction is dependent on the separation distance, particle sizes and
permeability of the particles. Our analysis reveals that when the
permeability of the particles is large, the streamlines are more parallel
and the particle–particle interaction has less effect on the particle
motion. We further show that a smaller permeability and bigger particle size
generally tend to squeeze the streamlines and velocity contour towards the
wall. |
doi_str_mv | 10.1017/jfm.2018.918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174394435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_918</cupid><sourcerecordid>2174394435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOPnaTHKX4BQUP9iiE7G7SpmybNdla--_dpQUvXmaY4Xln4EHolkBOgIiHtdvkFIjMFZFnaEJ4qTJR8uIcTQAozQihcImuUloDEAZKTNDnRxv2-NunOuwSduMQHO73AXchjqvUrWz0tWlxZ2Lv69Ym3EezTa3p_XaJTRuG2q8sNj8-jWGD60Prt42N1-jCmTbZm1OfosXz02L2ms3fX95mj_OsZhz6jFEpJJQEZKUaKDhhxkBZUiu4E01lC1YxJVVjhKjAVUpwQRhztGyslCVnU3R3PNvF8LWzqdfrsIvb4aOmRHCmOGfFQN0fqTqGlKJ1uot-Y-JBE9CjPj3o06M-Pegb8PyEm00VfbO0f1f_DfwCs4tx5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174394435</pqid></control><display><type>article</type><title>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</title><source>Cambridge Journals Online</source><creator>Yao, Xin ; Ng, Chyi Huey ; Teo, Jia Rui Amanda ; Wong, Teck Neng</creator><creatorcontrib>Yao, Xin ; Ng, Chyi Huey ; Teo, Jia Rui Amanda ; Wong, Teck Neng</creatorcontrib><description>We describe the motion of two freely moving porous spherical particles
located along the axis of a cylindrical tube with background Poiseuille flow
at low Reynolds number. The stream function and a framework based on
cylindrical harmonics are adopted to solve the flow field around the
particles and the flow within the tube, respectively. The two solutions are
employed in an iterated framework using the method of reflections. We first
consider the case of two identical particles, followed by two particles with
different dimensions. In both cases, the drag force coefficients of the
particles are solved as functions of the separation distance between the
particles and the permeability of the particles. The detailed flow field in
the vicinity of the two particles is investigated by plotting the
streamlines and velocity contours. We find that the particle–particle
interaction is dependent on the separation distance, particle sizes and
permeability of the particles. Our analysis reveals that when the
permeability of the particles is large, the streamlines are more parallel
and the particle–particle interaction has less effect on the particle
motion. We further show that a smaller permeability and bigger particle size
generally tend to squeeze the streamlines and velocity contour towards the
wall.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.918</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Coefficients ; Coordinate transformations ; Cylinders ; Dimensions ; Distance ; Drag ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Frameworks ; Investigations ; JFM Papers ; Laminar flow ; Numerical analysis ; Particle interactions ; Particle motion ; Permeability ; Porous materials ; Reynolds number ; Separation ; Solutions ; Stream functions ; Streamlines ; Velocity ; Viscous flow</subject><ispartof>Journal of fluid mechanics, 2019-02, Vol.861, p.643-678</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</citedby><cites>FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</cites><orcidid>0000-0001-5657-196X ; 0000-0002-3029-2521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018009187/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Yao, Xin</creatorcontrib><creatorcontrib>Ng, Chyi Huey</creatorcontrib><creatorcontrib>Teo, Jia Rui Amanda</creatorcontrib><creatorcontrib>Wong, Teck Neng</creatorcontrib><title>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We describe the motion of two freely moving porous spherical particles
located along the axis of a cylindrical tube with background Poiseuille flow
at low Reynolds number. The stream function and a framework based on
cylindrical harmonics are adopted to solve the flow field around the
particles and the flow within the tube, respectively. The two solutions are
employed in an iterated framework using the method of reflections. We first
consider the case of two identical particles, followed by two particles with
different dimensions. In both cases, the drag force coefficients of the
particles are solved as functions of the separation distance between the
particles and the permeability of the particles. The detailed flow field in
the vicinity of the two particles is investigated by plotting the
streamlines and velocity contours. We find that the particle–particle
interaction is dependent on the separation distance, particle sizes and
permeability of the particles. Our analysis reveals that when the
permeability of the particles is large, the streamlines are more parallel
and the particle–particle interaction has less effect on the particle
motion. We further show that a smaller permeability and bigger particle size
generally tend to squeeze the streamlines and velocity contour towards the
wall.</description><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Coordinate transformations</subject><subject>Cylinders</subject><subject>Dimensions</subject><subject>Distance</subject><subject>Drag</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Frameworks</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Laminar flow</subject><subject>Numerical analysis</subject><subject>Particle interactions</subject><subject>Particle motion</subject><subject>Permeability</subject><subject>Porous materials</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Solutions</subject><subject>Stream functions</subject><subject>Streamlines</subject><subject>Velocity</subject><subject>Viscous flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOPnaTHKX4BQUP9iiE7G7SpmybNdla--_dpQUvXmaY4Xln4EHolkBOgIiHtdvkFIjMFZFnaEJ4qTJR8uIcTQAozQihcImuUloDEAZKTNDnRxv2-NunOuwSduMQHO73AXchjqvUrWz0tWlxZ2Lv69Ym3EezTa3p_XaJTRuG2q8sNj8-jWGD60Prt42N1-jCmTbZm1OfosXz02L2ms3fX95mj_OsZhz6jFEpJJQEZKUaKDhhxkBZUiu4E01lC1YxJVVjhKjAVUpwQRhztGyslCVnU3R3PNvF8LWzqdfrsIvb4aOmRHCmOGfFQN0fqTqGlKJ1uot-Y-JBE9CjPj3o06M-Pegb8PyEm00VfbO0f1f_DfwCs4tx5A</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Yao, Xin</creator><creator>Ng, Chyi Huey</creator><creator>Teo, Jia Rui Amanda</creator><creator>Wong, Teck Neng</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5657-196X</orcidid><orcidid>https://orcid.org/0000-0002-3029-2521</orcidid></search><sort><creationdate>20190225</creationdate><title>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</title><author>Yao, Xin ; Ng, Chyi Huey ; Teo, Jia Rui Amanda ; Wong, Teck Neng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Coordinate transformations</topic><topic>Cylinders</topic><topic>Dimensions</topic><topic>Distance</topic><topic>Drag</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Frameworks</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Laminar flow</topic><topic>Numerical analysis</topic><topic>Particle interactions</topic><topic>Particle motion</topic><topic>Permeability</topic><topic>Porous materials</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Solutions</topic><topic>Stream functions</topic><topic>Streamlines</topic><topic>Velocity</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xin</creatorcontrib><creatorcontrib>Ng, Chyi Huey</creatorcontrib><creatorcontrib>Teo, Jia Rui Amanda</creatorcontrib><creatorcontrib>Wong, Teck Neng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xin</au><au>Ng, Chyi Huey</au><au>Teo, Jia Rui Amanda</au><au>Wong, Teck Neng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-02-25</date><risdate>2019</risdate><volume>861</volume><spage>643</spage><epage>678</epage><pages>643-678</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We describe the motion of two freely moving porous spherical particles
located along the axis of a cylindrical tube with background Poiseuille flow
at low Reynolds number. The stream function and a framework based on
cylindrical harmonics are adopted to solve the flow field around the
particles and the flow within the tube, respectively. The two solutions are
employed in an iterated framework using the method of reflections. We first
consider the case of two identical particles, followed by two particles with
different dimensions. In both cases, the drag force coefficients of the
particles are solved as functions of the separation distance between the
particles and the permeability of the particles. The detailed flow field in
the vicinity of the two particles is investigated by plotting the
streamlines and velocity contours. We find that the particle–particle
interaction is dependent on the separation distance, particle sizes and
permeability of the particles. Our analysis reveals that when the
permeability of the particles is large, the streamlines are more parallel
and the particle–particle interaction has less effect on the particle
motion. We further show that a smaller permeability and bigger particle size
generally tend to squeeze the streamlines and velocity contour towards the
wall.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.918</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-5657-196X</orcidid><orcidid>https://orcid.org/0000-0002-3029-2521</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-02, Vol.861, p.643-678 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2174394435 |
source | Cambridge Journals Online |
subjects | Boundary conditions Coefficients Coordinate transformations Cylinders Dimensions Distance Drag Fluid dynamics Fluid flow Fluid mechanics Frameworks Investigations JFM Papers Laminar flow Numerical analysis Particle interactions Particle motion Permeability Porous materials Reynolds number Separation Solutions Stream functions Streamlines Velocity Viscous flow |
title | Slow viscous flow of two porous spherical particles translating along the axis of a cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20viscous%20flow%20of%20two%20porous%20spherical%20particles%20translating%20along%20the%20axis%20of%20a%20cylinder&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Yao,%20Xin&rft.date=2019-02-25&rft.volume=861&rft.spage=643&rft.epage=678&rft.pages=643-678&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.918&rft_dat=%3Cproquest_cross%3E2174394435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174394435&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_918&rfr_iscdi=true |