Slow viscous flow of two porous spherical particles translating along the axis of a cylinder

We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-02, Vol.861, p.643-678
Hauptverfasser: Yao, Xin, Ng, Chyi Huey, Teo, Jia Rui Amanda, Wong, Teck Neng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue
container_start_page 643
container_title Journal of fluid mechanics
container_volume 861
creator Yao, Xin
Ng, Chyi Huey
Teo, Jia Rui Amanda
Wong, Teck Neng
description We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and the flow within the tube, respectively. The two solutions are employed in an iterated framework using the method of reflections. We first consider the case of two identical particles, followed by two particles with different dimensions. In both cases, the drag force coefficients of the particles are solved as functions of the separation distance between the particles and the permeability of the particles. The detailed flow field in the vicinity of the two particles is investigated by plotting the streamlines and velocity contours. We find that the particle–particle interaction is dependent on the separation distance, particle sizes and permeability of the particles. Our analysis reveals that when the permeability of the particles is large, the streamlines are more parallel and the particle–particle interaction has less effect on the particle motion. We further show that a smaller permeability and bigger particle size generally tend to squeeze the streamlines and velocity contour towards the wall.
doi_str_mv 10.1017/jfm.2018.918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174394435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_918</cupid><sourcerecordid>2174394435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOPnaTHKX4BQUP9iiE7G7SpmybNdla--_dpQUvXmaY4Xln4EHolkBOgIiHtdvkFIjMFZFnaEJ4qTJR8uIcTQAozQihcImuUloDEAZKTNDnRxv2-NunOuwSduMQHO73AXchjqvUrWz0tWlxZ2Lv69Ym3EezTa3p_XaJTRuG2q8sNj8-jWGD60Prt42N1-jCmTbZm1OfosXz02L2ms3fX95mj_OsZhz6jFEpJJQEZKUaKDhhxkBZUiu4E01lC1YxJVVjhKjAVUpwQRhztGyslCVnU3R3PNvF8LWzqdfrsIvb4aOmRHCmOGfFQN0fqTqGlKJ1uot-Y-JBE9CjPj3o06M-Pegb8PyEm00VfbO0f1f_DfwCs4tx5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174394435</pqid></control><display><type>article</type><title>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</title><source>Cambridge Journals Online</source><creator>Yao, Xin ; Ng, Chyi Huey ; Teo, Jia Rui Amanda ; Wong, Teck Neng</creator><creatorcontrib>Yao, Xin ; Ng, Chyi Huey ; Teo, Jia Rui Amanda ; Wong, Teck Neng</creatorcontrib><description>We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and the flow within the tube, respectively. The two solutions are employed in an iterated framework using the method of reflections. We first consider the case of two identical particles, followed by two particles with different dimensions. In both cases, the drag force coefficients of the particles are solved as functions of the separation distance between the particles and the permeability of the particles. The detailed flow field in the vicinity of the two particles is investigated by plotting the streamlines and velocity contours. We find that the particle–particle interaction is dependent on the separation distance, particle sizes and permeability of the particles. Our analysis reveals that when the permeability of the particles is large, the streamlines are more parallel and the particle–particle interaction has less effect on the particle motion. We further show that a smaller permeability and bigger particle size generally tend to squeeze the streamlines and velocity contour towards the wall.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.918</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary conditions ; Coefficients ; Coordinate transformations ; Cylinders ; Dimensions ; Distance ; Drag ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Frameworks ; Investigations ; JFM Papers ; Laminar flow ; Numerical analysis ; Particle interactions ; Particle motion ; Permeability ; Porous materials ; Reynolds number ; Separation ; Solutions ; Stream functions ; Streamlines ; Velocity ; Viscous flow</subject><ispartof>Journal of fluid mechanics, 2019-02, Vol.861, p.643-678</ispartof><rights>2018 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</citedby><cites>FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</cites><orcidid>0000-0001-5657-196X ; 0000-0002-3029-2521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018009187/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Yao, Xin</creatorcontrib><creatorcontrib>Ng, Chyi Huey</creatorcontrib><creatorcontrib>Teo, Jia Rui Amanda</creatorcontrib><creatorcontrib>Wong, Teck Neng</creatorcontrib><title>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and the flow within the tube, respectively. The two solutions are employed in an iterated framework using the method of reflections. We first consider the case of two identical particles, followed by two particles with different dimensions. In both cases, the drag force coefficients of the particles are solved as functions of the separation distance between the particles and the permeability of the particles. The detailed flow field in the vicinity of the two particles is investigated by plotting the streamlines and velocity contours. We find that the particle–particle interaction is dependent on the separation distance, particle sizes and permeability of the particles. Our analysis reveals that when the permeability of the particles is large, the streamlines are more parallel and the particle–particle interaction has less effect on the particle motion. We further show that a smaller permeability and bigger particle size generally tend to squeeze the streamlines and velocity contour towards the wall.</description><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Coordinate transformations</subject><subject>Cylinders</subject><subject>Dimensions</subject><subject>Distance</subject><subject>Drag</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Frameworks</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Laminar flow</subject><subject>Numerical analysis</subject><subject>Particle interactions</subject><subject>Particle motion</subject><subject>Permeability</subject><subject>Porous materials</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Solutions</subject><subject>Stream functions</subject><subject>Streamlines</subject><subject>Velocity</subject><subject>Viscous flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tOPnaTHKX4BQUP9iiE7G7SpmybNdla--_dpQUvXmaY4Xln4EHolkBOgIiHtdvkFIjMFZFnaEJ4qTJR8uIcTQAozQihcImuUloDEAZKTNDnRxv2-NunOuwSduMQHO73AXchjqvUrWz0tWlxZ2Lv69Ym3EezTa3p_XaJTRuG2q8sNj8-jWGD60Prt42N1-jCmTbZm1OfosXz02L2ms3fX95mj_OsZhz6jFEpJJQEZKUaKDhhxkBZUiu4E01lC1YxJVVjhKjAVUpwQRhztGyslCVnU3R3PNvF8LWzqdfrsIvb4aOmRHCmOGfFQN0fqTqGlKJ1uot-Y-JBE9CjPj3o06M-Pegb8PyEm00VfbO0f1f_DfwCs4tx5A</recordid><startdate>20190225</startdate><enddate>20190225</enddate><creator>Yao, Xin</creator><creator>Ng, Chyi Huey</creator><creator>Teo, Jia Rui Amanda</creator><creator>Wong, Teck Neng</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5657-196X</orcidid><orcidid>https://orcid.org/0000-0002-3029-2521</orcidid></search><sort><creationdate>20190225</creationdate><title>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</title><author>Yao, Xin ; Ng, Chyi Huey ; Teo, Jia Rui Amanda ; Wong, Teck Neng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3287806108b9d05413aa0662e74f7dbe53b3989da77b0fb9747133f26de88643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Coordinate transformations</topic><topic>Cylinders</topic><topic>Dimensions</topic><topic>Distance</topic><topic>Drag</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Frameworks</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Laminar flow</topic><topic>Numerical analysis</topic><topic>Particle interactions</topic><topic>Particle motion</topic><topic>Permeability</topic><topic>Porous materials</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Solutions</topic><topic>Stream functions</topic><topic>Streamlines</topic><topic>Velocity</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Xin</creatorcontrib><creatorcontrib>Ng, Chyi Huey</creatorcontrib><creatorcontrib>Teo, Jia Rui Amanda</creatorcontrib><creatorcontrib>Wong, Teck Neng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Xin</au><au>Ng, Chyi Huey</au><au>Teo, Jia Rui Amanda</au><au>Wong, Teck Neng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow viscous flow of two porous spherical particles translating along the axis of a cylinder</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-02-25</date><risdate>2019</risdate><volume>861</volume><spage>643</spage><epage>678</epage><pages>643-678</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and the flow within the tube, respectively. The two solutions are employed in an iterated framework using the method of reflections. We first consider the case of two identical particles, followed by two particles with different dimensions. In both cases, the drag force coefficients of the particles are solved as functions of the separation distance between the particles and the permeability of the particles. The detailed flow field in the vicinity of the two particles is investigated by plotting the streamlines and velocity contours. We find that the particle–particle interaction is dependent on the separation distance, particle sizes and permeability of the particles. Our analysis reveals that when the permeability of the particles is large, the streamlines are more parallel and the particle–particle interaction has less effect on the particle motion. We further show that a smaller permeability and bigger particle size generally tend to squeeze the streamlines and velocity contour towards the wall.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.918</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-5657-196X</orcidid><orcidid>https://orcid.org/0000-0002-3029-2521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-02, Vol.861, p.643-678
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2174394435
source Cambridge Journals Online
subjects Boundary conditions
Coefficients
Coordinate transformations
Cylinders
Dimensions
Distance
Drag
Fluid dynamics
Fluid flow
Fluid mechanics
Frameworks
Investigations
JFM Papers
Laminar flow
Numerical analysis
Particle interactions
Particle motion
Permeability
Porous materials
Reynolds number
Separation
Solutions
Stream functions
Streamlines
Velocity
Viscous flow
title Slow viscous flow of two porous spherical particles translating along the axis of a cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20viscous%20flow%20of%20two%20porous%20spherical%20particles%20translating%20along%20the%20axis%20of%20a%20cylinder&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Yao,%20Xin&rft.date=2019-02-25&rft.volume=861&rft.spage=643&rft.epage=678&rft.pages=643-678&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.918&rft_dat=%3Cproquest_cross%3E2174394435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174394435&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_918&rfr_iscdi=true