mathbb \mathbb [u] –Cyclic and Constacyclic Codes

Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-08, Vol.63 (8), p.4883-4893
Hauptverfasser: Aydogdu, Ismail, Abualrub, Taher, Siap, Irfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4893
container_issue 8
container_start_page 4883
container_title IEEE transactions on information theory
container_volume 63
creator Aydogdu, Ismail
Abualrub, Taher
Siap, Irfan
description Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .
doi_str_mv 10.1109/TIT.2016.2632163
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174329732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7755852</ieee_id><sourcerecordid>2174329732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZmWSTPcriR6HgpZ5UQpJNsKXt1s320Jv_wX_oL3HLFk8vMzzvDDyMXQOfAPDybj6dT5BDMcGCEAo6YSOQUuVlIcUpG3EOOi-F0OfsIqVlPwoJOGK0tt2nc9n7Md92H9nv90-196uFz-ymzqpmkzrrh0XV1CFdsrNoVylcHXPMXh8f5tVzPnt5mlb3s9wDFZgHUNbZ6CTq6EPtgTsqdFmrGAGF9Z7IxogOtA7aEwaKtuesIxJlFERjdjvc3bbN1y6kziybXbvpXxoEJQhLRdhTfKB826TUhmi27WJt270Bbg5qTK_GHNSYo5q-cjNUFiGEf1wpKbVE-gPjJ1_B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174329732</pqid></control><display><type>article</type><title>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Aydogdu, Ismail ; Abualrub, Taher ; Siap, Irfan</creator><creatorcontrib>Aydogdu, Ismail ; Abualrub, Taher ; Siap, Irfan</creatorcontrib><description>Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2632163</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Binary codes ; Binary system ; bounds ; Codes ; constacyclic codes ; cyclic codes ; duality ; Generators ; Linear codes ; Mathematics ; Structural rings ; Zinc ; Z₂Z₂[&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;u ]-linear cyclic codes</subject><ispartof>IEEE transactions on information theory, 2017-08, Vol.63 (8), p.4883-4893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</citedby><cites>FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</cites><orcidid>0000-0002-9702-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7755852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7755852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aydogdu, Ismail</creatorcontrib><creatorcontrib>Abualrub, Taher</creatorcontrib><creatorcontrib>Siap, Irfan</creatorcontrib><title>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .</description><subject>Additives</subject><subject>Binary codes</subject><subject>Binary system</subject><subject>bounds</subject><subject>Codes</subject><subject>constacyclic codes</subject><subject>cyclic codes</subject><subject>duality</subject><subject>Generators</subject><subject>Linear codes</subject><subject>Mathematics</subject><subject>Structural rings</subject><subject>Zinc</subject><subject>Z₂Z₂[&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;u ]-linear cyclic codes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZmWSTPcriR6HgpZ5UQpJNsKXt1s320Jv_wX_oL3HLFk8vMzzvDDyMXQOfAPDybj6dT5BDMcGCEAo6YSOQUuVlIcUpG3EOOi-F0OfsIqVlPwoJOGK0tt2nc9n7Md92H9nv90-196uFz-ymzqpmkzrrh0XV1CFdsrNoVylcHXPMXh8f5tVzPnt5mlb3s9wDFZgHUNbZ6CTq6EPtgTsqdFmrGAGF9Z7IxogOtA7aEwaKtuesIxJlFERjdjvc3bbN1y6kziybXbvpXxoEJQhLRdhTfKB826TUhmi27WJt270Bbg5qTK_GHNSYo5q-cjNUFiGEf1wpKbVE-gPjJ1_B</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Aydogdu, Ismail</creator><creator>Abualrub, Taher</creator><creator>Siap, Irfan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9702-1531</orcidid></search><sort><creationdate>201708</creationdate><title>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</title><author>Aydogdu, Ismail ; Abualrub, Taher ; Siap, Irfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additives</topic><topic>Binary codes</topic><topic>Binary system</topic><topic>bounds</topic><topic>Codes</topic><topic>constacyclic codes</topic><topic>cyclic codes</topic><topic>duality</topic><topic>Generators</topic><topic>Linear codes</topic><topic>Mathematics</topic><topic>Structural rings</topic><topic>Zinc</topic><topic>Z₂Z₂[&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;u ]-linear cyclic codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydogdu, Ismail</creatorcontrib><creatorcontrib>Abualrub, Taher</creatorcontrib><creatorcontrib>Siap, Irfan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aydogdu, Ismail</au><au>Abualrub, Taher</au><au>Siap, Irfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-08</date><risdate>2017</risdate><volume>63</volume><issue>8</issue><spage>4883</spage><epage>4893</epage><pages>4883-4893</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2632163</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9702-1531</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-08, Vol.63 (8), p.4883-4893
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2174329732
source IEEE/IET Electronic Library (IEL)
subjects Additives
Binary codes
Binary system
bounds
Codes
constacyclic codes
cyclic codes
duality
Generators
Linear codes
Mathematics
Structural rings
Zinc
Z₂Z₂[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">u ]-linear cyclic codes
title mathbb \mathbb [u] –Cyclic and Constacyclic Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mathbb%20%5Cmathbb%20%5Bu%5D%20%E2%80%93Cyclic%20and%20Constacyclic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Aydogdu,%20Ismail&rft.date=2017-08&rft.volume=63&rft.issue=8&rft.spage=4883&rft.epage=4893&rft.pages=4883-4893&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2632163&rft_dat=%3Cproquest_RIE%3E2174329732%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174329732&rft_id=info:pmid/&rft_ieee_id=7755852&rfr_iscdi=true