mathbb \mathbb [u] –Cyclic and Constacyclic Codes
Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1}...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2017-08, Vol.63 (8), p.4883-4893 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4893 |
---|---|
container_issue | 8 |
container_start_page | 4883 |
container_title | IEEE transactions on information theory |
container_volume | 63 |
creator | Aydogdu, Ismail Abualrub, Taher Siap, Irfan |
description | Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β . |
doi_str_mv | 10.1109/TIT.2016.2632163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174329732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7755852</ieee_id><sourcerecordid>2174329732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZmWSTPcriR6HgpZ5UQpJNsKXt1s320Jv_wX_oL3HLFk8vMzzvDDyMXQOfAPDybj6dT5BDMcGCEAo6YSOQUuVlIcUpG3EOOi-F0OfsIqVlPwoJOGK0tt2nc9n7Md92H9nv90-196uFz-ymzqpmkzrrh0XV1CFdsrNoVylcHXPMXh8f5tVzPnt5mlb3s9wDFZgHUNbZ6CTq6EPtgTsqdFmrGAGF9Z7IxogOtA7aEwaKtuesIxJlFERjdjvc3bbN1y6kziybXbvpXxoEJQhLRdhTfKB826TUhmi27WJt270Bbg5qTK_GHNSYo5q-cjNUFiGEf1wpKbVE-gPjJ1_B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174329732</pqid></control><display><type>article</type><title>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Aydogdu, Ismail ; Abualrub, Taher ; Siap, Irfan</creator><creatorcontrib>Aydogdu, Ismail ; Abualrub, Taher ; Siap, Irfan</creatorcontrib><description>Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2632163</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Binary codes ; Binary system ; bounds ; Codes ; constacyclic codes ; cyclic codes ; duality ; Generators ; Linear codes ; Mathematics ; Structural rings ; Zinc ; Z₂Z₂[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">u ]-linear cyclic codes</subject><ispartof>IEEE transactions on information theory, 2017-08, Vol.63 (8), p.4883-4893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</citedby><cites>FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</cites><orcidid>0000-0002-9702-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7755852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7755852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aydogdu, Ismail</creatorcontrib><creatorcontrib>Abualrub, Taher</creatorcontrib><creatorcontrib>Siap, Irfan</creatorcontrib><title>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .</description><subject>Additives</subject><subject>Binary codes</subject><subject>Binary system</subject><subject>bounds</subject><subject>Codes</subject><subject>constacyclic codes</subject><subject>cyclic codes</subject><subject>duality</subject><subject>Generators</subject><subject>Linear codes</subject><subject>Mathematics</subject><subject>Structural rings</subject><subject>Zinc</subject><subject>Z₂Z₂[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">u ]-linear cyclic codes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZmWSTPcriR6HgpZ5UQpJNsKXt1s320Jv_wX_oL3HLFk8vMzzvDDyMXQOfAPDybj6dT5BDMcGCEAo6YSOQUuVlIcUpG3EOOi-F0OfsIqVlPwoJOGK0tt2nc9n7Md92H9nv90-196uFz-ymzqpmkzrrh0XV1CFdsrNoVylcHXPMXh8f5tVzPnt5mlb3s9wDFZgHUNbZ6CTq6EPtgTsqdFmrGAGF9Z7IxogOtA7aEwaKtuesIxJlFERjdjvc3bbN1y6kziybXbvpXxoEJQhLRdhTfKB826TUhmi27WJt270Bbg5qTK_GHNSYo5q-cjNUFiGEf1wpKbVE-gPjJ1_B</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Aydogdu, Ismail</creator><creator>Abualrub, Taher</creator><creator>Siap, Irfan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9702-1531</orcidid></search><sort><creationdate>201708</creationdate><title>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</title><author>Aydogdu, Ismail ; Abualrub, Taher ; Siap, Irfan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1362-e17abafb528fcedc10b3689d7ff124acc33aff2b188e8c32e3facedab3349f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additives</topic><topic>Binary codes</topic><topic>Binary system</topic><topic>bounds</topic><topic>Codes</topic><topic>constacyclic codes</topic><topic>cyclic codes</topic><topic>duality</topic><topic>Generators</topic><topic>Linear codes</topic><topic>Mathematics</topic><topic>Structural rings</topic><topic>Zinc</topic><topic>Z₂Z₂[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">u ]-linear cyclic codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydogdu, Ismail</creatorcontrib><creatorcontrib>Abualrub, Taher</creatorcontrib><creatorcontrib>Siap, Irfan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aydogdu, Ismail</au><au>Abualrub, Taher</au><au>Siap, Irfan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mathbb \mathbb [u] –Cyclic and Constacyclic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-08</date><risdate>2017</risdate><volume>63</volume><issue>8</issue><spage>4883</spage><epage>4893</epage><pages>4883-4893</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Following the very recent studies on ℤ 2 ℤ 4 -additive codes, ℤ 2 ℤ 2 [u]-linear codes have been introduced by Aydogdu et al. In this paper, we introduce and study the algebraic structure of cyclic, constacyclic codes and their duals over the R-module Z 2 α R β where R = ℤ 2 +uℤ 2 = {0, 1, u, u + 1} is the ring with four elements and u 2 = 0. We determine the generating independent sets and the types and sizes of both such codes and their duals. Finally, we present a bound and an optimal family of codes attaining this bound and also give some illustrative examples of binary codes that have good parameters which are obtained from the cyclic codes in Z 2 α R β .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2632163</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9702-1531</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2017-08, Vol.63 (8), p.4883-4893 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2174329732 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Additives Binary codes Binary system bounds Codes constacyclic codes cyclic codes duality Generators Linear codes Mathematics Structural rings Zinc Z₂Z₂[<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">u ]-linear cyclic codes |
title | mathbb \mathbb [u] –Cyclic and Constacyclic Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mathbb%20%5Cmathbb%20%5Bu%5D%20%E2%80%93Cyclic%20and%20Constacyclic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Aydogdu,%20Ismail&rft.date=2017-08&rft.volume=63&rft.issue=8&rft.spage=4883&rft.epage=4893&rft.pages=4883-4893&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2632163&rft_dat=%3Cproquest_RIE%3E2174329732%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174329732&rft_id=info:pmid/&rft_ieee_id=7755852&rfr_iscdi=true |