The Kolmogorov-Zakharov Model for Optical Fiber Communication

A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-01, Vol.63 (1), p.377-391
1. Verfasser: Yousefi, Mansoor I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 1
container_start_page 377
container_title IEEE transactions on information theory
container_volume 63
creator Yousefi, Mansoor I.
description A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in the nonlinear Schrödinger equation. This is achieved by considering interactions among four Fourier modes and studying the role of the resonant, non-resonant, and trivial quartets in the dynamics. As an application, a power spectral density is suggested for calculating the interference power in dense wavelength-division multiplexed optical systems, based on the kinetic equation of the WWT. This power spectrum, termed the Kolmogorov-Zakharov (KZ) model, results in a better estimate of the signal spectrum in optical fiber, compared with the so-called Gaussian noise model. The KZ model is generalized to non-stationary inputs and multi-span optical systems.
doi_str_mv 10.1109/TIT.2016.2620985
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2174327179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7676314</ieee_id><sourcerecordid>4288742791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e34bf9829e79b1891fbfa90eee219c0d8861b732a2e1ad63f7504d2b9fa0c0823</originalsourceid><addsrcrecordid>eNp9kLtOwzAUQC0EEqWwI7FEYk7x9dsDA6ooVBR1CQuL5SQ2TUnq4qRI_D2uWjEy3YfOfeggdA14AoD1XTEvJgSDmBBBsFb8BI2Ac5lrwdkpGmEMKteMqXN00ffrVDIOZITui5XLXkLbhY8Qw3f-bj9XNiXZa6hdm_kQs-V2aCrbZrOmdDGbhq7bbVJjaMLmEp152_bu6hjH6G32WEyf88XyaT59WOQVBT3kjrLSa0W0k7oEpcGX3mrsnCOgK1wrJaCUlFjiwNaCeskxq0mpvcUVVoSO0e1h7zaGr53rB7MOu7hJJw0BySiRIPV_FChOJSFS80ThA1XF0PfRebONTWfjjwFs9ipNUmn2Ks1RZRq5OYw06eU_XAopKDD6Cw_Bbb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853722795</pqid></control><display><type>article</type><title>The Kolmogorov-Zakharov Model for Optical Fiber Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Yousefi, Mansoor I.</creator><creatorcontrib>Yousefi, Mansoor I.</creatorcontrib><description>A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in the nonlinear Schrödinger equation. This is achieved by considering interactions among four Fourier modes and studying the role of the resonant, non-resonant, and trivial quartets in the dynamics. As an application, a power spectral density is suggested for calculating the interference power in dense wavelength-division multiplexed optical systems, based on the kinetic equation of the WWT. This power spectrum, termed the Kolmogorov-Zakharov (KZ) model, results in a better estimate of the signal spectrum in optical fiber, compared with the so-called Gaussian noise model. The KZ model is generalized to non-stationary inputs and multi-span optical systems.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2620985</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; cumulants ; Division ; Fiber-optic communication ; Information theory ; Interference ; Kinetic equations ; Kinetic theory ; Mathematical model ; Modulation ; moments ; Nonlinear equations ; Nonlinear optics ; Normal distribution ; Optical communication ; Optical fibers ; Partial differential equations ; perturbation theory ; Power spectral density ; Random noise ; Schrodinger equation ; Turbulence ; Wavelength division multiplexing ; weak wave turbulence</subject><ispartof>IEEE transactions on information theory, 2017-01, Vol.63 (1), p.377-391</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e34bf9829e79b1891fbfa90eee219c0d8861b732a2e1ad63f7504d2b9fa0c0823</citedby><cites>FETCH-LOGICAL-c319t-e34bf9829e79b1891fbfa90eee219c0d8861b732a2e1ad63f7504d2b9fa0c0823</cites><orcidid>0000-0003-4899-4609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7676314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7676314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yousefi, Mansoor I.</creatorcontrib><title>The Kolmogorov-Zakharov Model for Optical Fiber Communication</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in the nonlinear Schrödinger equation. This is achieved by considering interactions among four Fourier modes and studying the role of the resonant, non-resonant, and trivial quartets in the dynamics. As an application, a power spectral density is suggested for calculating the interference power in dense wavelength-division multiplexed optical systems, based on the kinetic equation of the WWT. This power spectrum, termed the Kolmogorov-Zakharov (KZ) model, results in a better estimate of the signal spectrum in optical fiber, compared with the so-called Gaussian noise model. The KZ model is generalized to non-stationary inputs and multi-span optical systems.</description><subject>Correlation</subject><subject>cumulants</subject><subject>Division</subject><subject>Fiber-optic communication</subject><subject>Information theory</subject><subject>Interference</subject><subject>Kinetic equations</subject><subject>Kinetic theory</subject><subject>Mathematical model</subject><subject>Modulation</subject><subject>moments</subject><subject>Nonlinear equations</subject><subject>Nonlinear optics</subject><subject>Normal distribution</subject><subject>Optical communication</subject><subject>Optical fibers</subject><subject>Partial differential equations</subject><subject>perturbation theory</subject><subject>Power spectral density</subject><subject>Random noise</subject><subject>Schrodinger equation</subject><subject>Turbulence</subject><subject>Wavelength division multiplexing</subject><subject>weak wave turbulence</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kLtOwzAUQC0EEqWwI7FEYk7x9dsDA6ooVBR1CQuL5SQ2TUnq4qRI_D2uWjEy3YfOfeggdA14AoD1XTEvJgSDmBBBsFb8BI2Ac5lrwdkpGmEMKteMqXN00ffrVDIOZITui5XLXkLbhY8Qw3f-bj9XNiXZa6hdm_kQs-V2aCrbZrOmdDGbhq7bbVJjaMLmEp152_bu6hjH6G32WEyf88XyaT59WOQVBT3kjrLSa0W0k7oEpcGX3mrsnCOgK1wrJaCUlFjiwNaCeskxq0mpvcUVVoSO0e1h7zaGr53rB7MOu7hJJw0BySiRIPV_FChOJSFS80ThA1XF0PfRebONTWfjjwFs9ipNUmn2Ks1RZRq5OYw06eU_XAopKDD6Cw_Bbb0</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Yousefi, Mansoor I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4899-4609</orcidid></search><sort><creationdate>201701</creationdate><title>The Kolmogorov-Zakharov Model for Optical Fiber Communication</title><author>Yousefi, Mansoor I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e34bf9829e79b1891fbfa90eee219c0d8861b732a2e1ad63f7504d2b9fa0c0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Correlation</topic><topic>cumulants</topic><topic>Division</topic><topic>Fiber-optic communication</topic><topic>Information theory</topic><topic>Interference</topic><topic>Kinetic equations</topic><topic>Kinetic theory</topic><topic>Mathematical model</topic><topic>Modulation</topic><topic>moments</topic><topic>Nonlinear equations</topic><topic>Nonlinear optics</topic><topic>Normal distribution</topic><topic>Optical communication</topic><topic>Optical fibers</topic><topic>Partial differential equations</topic><topic>perturbation theory</topic><topic>Power spectral density</topic><topic>Random noise</topic><topic>Schrodinger equation</topic><topic>Turbulence</topic><topic>Wavelength division multiplexing</topic><topic>weak wave turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi, Mansoor I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yousefi, Mansoor I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kolmogorov-Zakharov Model for Optical Fiber Communication</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-01</date><risdate>2017</risdate><volume>63</volume><issue>1</issue><spage>377</spage><epage>391</epage><pages>377-391</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in the nonlinear Schrödinger equation. This is achieved by considering interactions among four Fourier modes and studying the role of the resonant, non-resonant, and trivial quartets in the dynamics. As an application, a power spectral density is suggested for calculating the interference power in dense wavelength-division multiplexed optical systems, based on the kinetic equation of the WWT. This power spectrum, termed the Kolmogorov-Zakharov (KZ) model, results in a better estimate of the signal spectrum in optical fiber, compared with the so-called Gaussian noise model. The KZ model is generalized to non-stationary inputs and multi-span optical systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2620985</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4899-4609</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-01, Vol.63 (1), p.377-391
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2174327179
source IEEE Electronic Library (IEL)
subjects Correlation
cumulants
Division
Fiber-optic communication
Information theory
Interference
Kinetic equations
Kinetic theory
Mathematical model
Modulation
moments
Nonlinear equations
Nonlinear optics
Normal distribution
Optical communication
Optical fibers
Partial differential equations
perturbation theory
Power spectral density
Random noise
Schrodinger equation
Turbulence
Wavelength division multiplexing
weak wave turbulence
title The Kolmogorov-Zakharov Model for Optical Fiber Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kolmogorov-Zakharov%20Model%20for%20Optical%20Fiber%20Communication&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yousefi,%20Mansoor%20I.&rft.date=2017-01&rft.volume=63&rft.issue=1&rft.spage=377&rft.epage=391&rft.pages=377-391&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2620985&rft_dat=%3Cproquest_RIE%3E4288742791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1853722795&rft_id=info:pmid/&rft_ieee_id=7676314&rfr_iscdi=true