The Kolmogorov-Zakharov Model for Optical Fiber Communication

A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-01, Vol.63 (1), p.377-391
1. Verfasser: Yousefi, Mansoor I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mathematical framework is presented to study the evolution of multi-point cumulants in nonlinear dispersive partial differential equations with random input data, based on the theory of weak wave turbulence (WWT). This framework is used to explain how energy is distributed among Fourier modes in the nonlinear Schrödinger equation. This is achieved by considering interactions among four Fourier modes and studying the role of the resonant, non-resonant, and trivial quartets in the dynamics. As an application, a power spectral density is suggested for calculating the interference power in dense wavelength-division multiplexed optical systems, based on the kinetic equation of the WWT. This power spectrum, termed the Kolmogorov-Zakharov (KZ) model, results in a better estimate of the signal spectrum in optical fiber, compared with the so-called Gaussian noise model. The KZ model is generalized to non-stationary inputs and multi-span optical systems.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2620985