Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices

Widening and deepening our understanding of how the brain works requires constant improvements not only in methods of recording neuron activity, but also improvements in experimental approaches to activating individual cells and their compartments. Optogenetic stimulation methods using finely focuse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience and behavioral physiology 2019-02, Vol.49 (2), p.227-232
Hauptverfasser: Nikitin, E. S., Roshchin, M. V., Ierusalimsky, V. N., Egorov, A. V., Balaban, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 2
container_start_page 227
container_title Neuroscience and behavioral physiology
container_volume 49
creator Nikitin, E. S.
Roshchin, M. V.
Ierusalimsky, V. N.
Egorov, A. V.
Balaban, P. M.
description Widening and deepening our understanding of how the brain works requires constant improvements not only in methods of recording neuron activity, but also improvements in experimental approaches to activating individual cells and their compartments. Optogenetic stimulation methods using finely focused light to trigger the opening of the light-activated depolarizing cation channel rhodopsin-2 (ChR2) have become widely used in recent years. Current molecular biological methods provide for the genetic expression of ChR2 in different cell types, which, along with the ability to carry out electrophysiological experiments with reproducible patterns of activation and stable levels of ChR2 expression, have developed optogenetics into an effective method for gathering physiological data previously unavailable to conventional methods. We report here the use of local activation of axons using an optogenetic stimulation method. Experiments were performed in combination with recording the electrical activity of neurons using the patch-clamp method, as well as laser scanning confocal microscopy. Experiments used the transgenic mouse strain Thy1-ChR2-YFP, in which ChR2 is expressed in only a small proportion of pyramidal cells. Direct studies of the effects of functional activity in the proximal branches of pyramidal neuron axons in layer 5 of the visual cortex and hippocampal field CA1 on the shape and generation of action potentials were carried out. We also describe methodological advances and means of solving problems encountered in the optogenetic stimulation of the axons of pyramidal neurons in the central nervous system of mammals.
doi_str_mv 10.1007/s11055-019-00719-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174071065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174071065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185x-917d2d804a171f51b76f11805d281fa8f3ea5b547ebac5de89521f7d9b9c00043</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA62pO2yzN5RzqhOGEqXgX0jadGW1Sk1a6tzezgnfenPDD959DPoQugVwDIezGAxBKIwI8CjHM4QhNgLIkyjh_P0YTQjiLCE35KTrzfkcCxTIyQWbddnarjOp0gTedbvpadtoabCvcfSg8H6zxh_CmfS9rvLCuUwOWpsRL3ba2kE3be_y8d7LRZQCeVO8OFW3wSn9ps8W3ToawqXWh_Dk6qWTt1cXvO0Wv93cvi2W0Wj88LuarqICMDhEHVsZlRlIJDCoKOZtVABmhZZxBJbMqUZLmNGUqlwUtVcZpDBUrec6L8LU0maKrcW_r7GevfCd2tncmnBQxsDQoIjMaqHikCme9d6oSrdONdHsBRBy8itGrCF7Fj1cxhFIylnyAzVa5v9X_tL4B1pB8hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174071065</pqid></control><display><type>article</type><title>Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices</title><source>SpringerLink (Online service)</source><creator>Nikitin, E. S. ; Roshchin, M. V. ; Ierusalimsky, V. N. ; Egorov, A. V. ; Balaban, P. M.</creator><creatorcontrib>Nikitin, E. S. ; Roshchin, M. V. ; Ierusalimsky, V. N. ; Egorov, A. V. ; Balaban, P. M.</creatorcontrib><description>Widening and deepening our understanding of how the brain works requires constant improvements not only in methods of recording neuron activity, but also improvements in experimental approaches to activating individual cells and their compartments. Optogenetic stimulation methods using finely focused light to trigger the opening of the light-activated depolarizing cation channel rhodopsin-2 (ChR2) have become widely used in recent years. Current molecular biological methods provide for the genetic expression of ChR2 in different cell types, which, along with the ability to carry out electrophysiological experiments with reproducible patterns of activation and stable levels of ChR2 expression, have developed optogenetics into an effective method for gathering physiological data previously unavailable to conventional methods. We report here the use of local activation of axons using an optogenetic stimulation method. Experiments were performed in combination with recording the electrical activity of neurons using the patch-clamp method, as well as laser scanning confocal microscopy. Experiments used the transgenic mouse strain Thy1-ChR2-YFP, in which ChR2 is expressed in only a small proportion of pyramidal cells. Direct studies of the effects of functional activity in the proximal branches of pyramidal neuron axons in layer 5 of the visual cortex and hippocampal field CA1 on the shape and generation of action potentials were carried out. We also describe methodological advances and means of solving problems encountered in the optogenetic stimulation of the axons of pyramidal neurons in the central nervous system of mammals.</description><identifier>ISSN: 0097-0549</identifier><identifier>EISSN: 1573-899X</identifier><identifier>DOI: 10.1007/s11055-019-00719-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation ; Axons ; Behavioral Sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain slice preparation ; Central nervous system ; Confocal microscopy ; Depolarization ; Genetics ; Hippocampus ; Information processing ; Methods ; Microscopy ; Neurobiology ; Neurons ; Neurosciences ; Optics ; Pyramidal cells ; Recording ; Rhodopsin ; Stimulation ; Strain ; Transgenic mice ; Visual cortex ; Visual fields</subject><ispartof>Neuroscience and behavioral physiology, 2019-02, Vol.49 (2), p.227-232</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Neuroscience and Behavioral Physiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185x-917d2d804a171f51b76f11805d281fa8f3ea5b547ebac5de89521f7d9b9c00043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11055-019-00719-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11055-019-00719-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nikitin, E. S.</creatorcontrib><creatorcontrib>Roshchin, M. V.</creatorcontrib><creatorcontrib>Ierusalimsky, V. N.</creatorcontrib><creatorcontrib>Egorov, A. V.</creatorcontrib><creatorcontrib>Balaban, P. M.</creatorcontrib><title>Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices</title><title>Neuroscience and behavioral physiology</title><addtitle>Neurosci Behav Physi</addtitle><description>Widening and deepening our understanding of how the brain works requires constant improvements not only in methods of recording neuron activity, but also improvements in experimental approaches to activating individual cells and their compartments. Optogenetic stimulation methods using finely focused light to trigger the opening of the light-activated depolarizing cation channel rhodopsin-2 (ChR2) have become widely used in recent years. Current molecular biological methods provide for the genetic expression of ChR2 in different cell types, which, along with the ability to carry out electrophysiological experiments with reproducible patterns of activation and stable levels of ChR2 expression, have developed optogenetics into an effective method for gathering physiological data previously unavailable to conventional methods. We report here the use of local activation of axons using an optogenetic stimulation method. Experiments were performed in combination with recording the electrical activity of neurons using the patch-clamp method, as well as laser scanning confocal microscopy. Experiments used the transgenic mouse strain Thy1-ChR2-YFP, in which ChR2 is expressed in only a small proportion of pyramidal cells. Direct studies of the effects of functional activity in the proximal branches of pyramidal neuron axons in layer 5 of the visual cortex and hippocampal field CA1 on the shape and generation of action potentials were carried out. We also describe methodological advances and means of solving problems encountered in the optogenetic stimulation of the axons of pyramidal neurons in the central nervous system of mammals.</description><subject>Activation</subject><subject>Axons</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain slice preparation</subject><subject>Central nervous system</subject><subject>Confocal microscopy</subject><subject>Depolarization</subject><subject>Genetics</subject><subject>Hippocampus</subject><subject>Information processing</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Optics</subject><subject>Pyramidal cells</subject><subject>Recording</subject><subject>Rhodopsin</subject><subject>Stimulation</subject><subject>Strain</subject><subject>Transgenic mice</subject><subject>Visual cortex</subject><subject>Visual fields</subject><issn>0097-0549</issn><issn>1573-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kNFKwzAUhoMoOKcv4FXA62pO2yzN5RzqhOGEqXgX0jadGW1Sk1a6tzezgnfenPDD959DPoQugVwDIezGAxBKIwI8CjHM4QhNgLIkyjh_P0YTQjiLCE35KTrzfkcCxTIyQWbddnarjOp0gTedbvpadtoabCvcfSg8H6zxh_CmfS9rvLCuUwOWpsRL3ba2kE3be_y8d7LRZQCeVO8OFW3wSn9ps8W3ToawqXWh_Dk6qWTt1cXvO0Wv93cvi2W0Wj88LuarqICMDhEHVsZlRlIJDCoKOZtVABmhZZxBJbMqUZLmNGUqlwUtVcZpDBUrec6L8LU0maKrcW_r7GevfCd2tncmnBQxsDQoIjMaqHikCme9d6oSrdONdHsBRBy8itGrCF7Fj1cxhFIylnyAzVa5v9X_tL4B1pB8hA</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Nikitin, E. S.</creator><creator>Roshchin, M. V.</creator><creator>Ierusalimsky, V. N.</creator><creator>Egorov, A. V.</creator><creator>Balaban, P. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20190215</creationdate><title>Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices</title><author>Nikitin, E. S. ; Roshchin, M. V. ; Ierusalimsky, V. N. ; Egorov, A. V. ; Balaban, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185x-917d2d804a171f51b76f11805d281fa8f3ea5b547ebac5de89521f7d9b9c00043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Axons</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain slice preparation</topic><topic>Central nervous system</topic><topic>Confocal microscopy</topic><topic>Depolarization</topic><topic>Genetics</topic><topic>Hippocampus</topic><topic>Information processing</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Optics</topic><topic>Pyramidal cells</topic><topic>Recording</topic><topic>Rhodopsin</topic><topic>Stimulation</topic><topic>Strain</topic><topic>Transgenic mice</topic><topic>Visual cortex</topic><topic>Visual fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikitin, E. S.</creatorcontrib><creatorcontrib>Roshchin, M. V.</creatorcontrib><creatorcontrib>Ierusalimsky, V. N.</creatorcontrib><creatorcontrib>Egorov, A. V.</creatorcontrib><creatorcontrib>Balaban, P. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Neuroscience and behavioral physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikitin, E. S.</au><au>Roshchin, M. V.</au><au>Ierusalimsky, V. N.</au><au>Egorov, A. V.</au><au>Balaban, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices</atitle><jtitle>Neuroscience and behavioral physiology</jtitle><stitle>Neurosci Behav Physi</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>49</volume><issue>2</issue><spage>227</spage><epage>232</epage><pages>227-232</pages><issn>0097-0549</issn><eissn>1573-899X</eissn><abstract>Widening and deepening our understanding of how the brain works requires constant improvements not only in methods of recording neuron activity, but also improvements in experimental approaches to activating individual cells and their compartments. Optogenetic stimulation methods using finely focused light to trigger the opening of the light-activated depolarizing cation channel rhodopsin-2 (ChR2) have become widely used in recent years. Current molecular biological methods provide for the genetic expression of ChR2 in different cell types, which, along with the ability to carry out electrophysiological experiments with reproducible patterns of activation and stable levels of ChR2 expression, have developed optogenetics into an effective method for gathering physiological data previously unavailable to conventional methods. We report here the use of local activation of axons using an optogenetic stimulation method. Experiments were performed in combination with recording the electrical activity of neurons using the patch-clamp method, as well as laser scanning confocal microscopy. Experiments used the transgenic mouse strain Thy1-ChR2-YFP, in which ChR2 is expressed in only a small proportion of pyramidal cells. Direct studies of the effects of functional activity in the proximal branches of pyramidal neuron axons in layer 5 of the visual cortex and hippocampal field CA1 on the shape and generation of action potentials were carried out. We also describe methodological advances and means of solving problems encountered in the optogenetic stimulation of the axons of pyramidal neurons in the central nervous system of mammals.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11055-019-00719-x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-0549
ispartof Neuroscience and behavioral physiology, 2019-02, Vol.49 (2), p.227-232
issn 0097-0549
1573-899X
language eng
recordid cdi_proquest_journals_2174071065
source SpringerLink (Online service)
subjects Activation
Axons
Behavioral Sciences
Biomedical and Life Sciences
Biomedicine
Brain
Brain slice preparation
Central nervous system
Confocal microscopy
Depolarization
Genetics
Hippocampus
Information processing
Methods
Microscopy
Neurobiology
Neurons
Neurosciences
Optics
Pyramidal cells
Recording
Rhodopsin
Stimulation
Strain
Transgenic mice
Visual cortex
Visual fields
title Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optogenetic%20Stimulation%20of%20the%20Axons%20of%20Visual%20Cortex%20and%20Hippocampus%20Pyramidal%20Neurons%20in%20Living%20Brain%20Slices&rft.jtitle=Neuroscience%20and%20behavioral%20physiology&rft.au=Nikitin,%20E.%20S.&rft.date=2019-02-15&rft.volume=49&rft.issue=2&rft.spage=227&rft.epage=232&rft.pages=227-232&rft.issn=0097-0549&rft.eissn=1573-899X&rft_id=info:doi/10.1007/s11055-019-00719-x&rft_dat=%3Cproquest_cross%3E2174071065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174071065&rft_id=info:pmid/&rfr_iscdi=true