Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste

Large-scale industrialization of flexible printed electronics will thrive on advanced functional conductive pastes with excellent properties such as high electrical conductivity and mechanical stability. Herein, we develop an effective method to simultaneously decrease the electrical resistivity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019, Vol.7 (5), p.1188-1197
Hauptverfasser: Wen, Jiayue, Tian, Yanhong, Hao, Changxiang, Wang, Shang, Mei, Zhipeng, Wu, Weizhen, Lu, Junyi, Zheng, Zhen, Tian, Yanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1197
container_issue 5
container_start_page 1188
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 7
creator Wen, Jiayue
Tian, Yanhong
Hao, Changxiang
Wang, Shang
Mei, Zhipeng
Wu, Weizhen
Lu, Junyi
Zheng, Zhen
Tian, Yanqing
description Large-scale industrialization of flexible printed electronics will thrive on advanced functional conductive pastes with excellent properties such as high electrical conductivity and mechanical stability. Herein, we develop an effective method to simultaneously decrease the electrical resistivity and improve the mechanical stability of silver-resin-based conductors by adding a small amount of nanostructured polyaniline (PANI). PANI nanomaterials for improving the properties of conductive composites were synthesized by a facile and repeatable chemical oxidative polymerization method and characterized. Significant improvements in electrical performance were observed. For example, for the 60 wt% silver-filled flexible conductors, the addition of 0.5 wt% PANIs reduces their electrical resistivity to one-thirtieth (from 1253.1 × 10 −5 Ω cm to 37.1 × 10 −5 Ω cm). After adding 0.5 wt% PANIs, the bending stability (Δ R / R 0 ) was also greatly improved from 92% to 2.3% (about 1/40th). Meanwhile, elastic conductors showed a much better performance in resistance stability and fatigue life (5 times longer than before) during stretching cycles after the addition of PANIs. A bendable printed circuit and a printed tensile resistive sensor were fabricated using the above PANIs to enhance conductive composites, which proved their potential applications in flexible printed circuits, stretchable pressure sensors, and e-skin or other fields.
doi_str_mv 10.1039/C8TC05391J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2174031703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174031703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-db6a3f126d590b2175b07ec2f71ca2e84fe8347e58198a08eddff0a5c8e18f563</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWGovfoKAN2E12Wyy2aMs1j8UvNTzks1O2pRtsiap2G9viqJzmYF583vMQ-iakjtKWHPfynVLOGvo6xmalYSTouasOv-bS3GJFjHuSC5JhRTNDKWl6oPVKlnvsDd4azdbPEEwPuyV04CnYF2CAZsRvmw_AtbeDQedfIi4P-LBT9ZtTpeTH4_K2dE6wE45v1cJglVjxBngcbTjJwQ8qZjgCl2YvIDFb5-j9-Xjun0uVm9PL-3DqtBlI1Ix9EIxQ0sx8Ib0Ja15T2rQpampViXIyoBkVQ1c0kYqImEYjCGKawlUGi7YHN38cKfgPw4QU7fzh-CyZZdpFWG0Jiyrbn9UOvgYA5gu_7xX4dhR0p2C7f6DZd94B20e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174031703</pqid></control><display><type>article</type><title>Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wen, Jiayue ; Tian, Yanhong ; Hao, Changxiang ; Wang, Shang ; Mei, Zhipeng ; Wu, Weizhen ; Lu, Junyi ; Zheng, Zhen ; Tian, Yanqing</creator><creatorcontrib>Wen, Jiayue ; Tian, Yanhong ; Hao, Changxiang ; Wang, Shang ; Mei, Zhipeng ; Wu, Weizhen ; Lu, Junyi ; Zheng, Zhen ; Tian, Yanqing</creatorcontrib><description>Large-scale industrialization of flexible printed electronics will thrive on advanced functional conductive pastes with excellent properties such as high electrical conductivity and mechanical stability. Herein, we develop an effective method to simultaneously decrease the electrical resistivity and improve the mechanical stability of silver-resin-based conductors by adding a small amount of nanostructured polyaniline (PANI). PANI nanomaterials for improving the properties of conductive composites were synthesized by a facile and repeatable chemical oxidative polymerization method and characterized. Significant improvements in electrical performance were observed. For example, for the 60 wt% silver-filled flexible conductors, the addition of 0.5 wt% PANIs reduces their electrical resistivity to one-thirtieth (from 1253.1 × 10 −5 Ω cm to 37.1 × 10 −5 Ω cm). After adding 0.5 wt% PANIs, the bending stability (Δ R / R 0 ) was also greatly improved from 92% to 2.3% (about 1/40th). Meanwhile, elastic conductors showed a much better performance in resistance stability and fatigue life (5 times longer than before) during stretching cycles after the addition of PANIs. A bendable printed circuit and a printed tensile resistive sensor were fabricated using the above PANIs to enhance conductive composites, which proved their potential applications in flexible printed circuits, stretchable pressure sensors, and e-skin or other fields.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C8TC05391J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical synthesis ; Composite materials ; Conductors ; Electrical resistivity ; Fatigue life ; Nanomaterials ; Organic chemistry ; Pastes ; Polyanilines ; Pressure sensors ; Printed circuits ; Stability</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (5), p.1188-1197</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-db6a3f126d590b2175b07ec2f71ca2e84fe8347e58198a08eddff0a5c8e18f563</citedby><cites>FETCH-LOGICAL-c296t-db6a3f126d590b2175b07ec2f71ca2e84fe8347e58198a08eddff0a5c8e18f563</cites><orcidid>0000-0002-1441-2431 ; 0000-0002-3427-649X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wen, Jiayue</creatorcontrib><creatorcontrib>Tian, Yanhong</creatorcontrib><creatorcontrib>Hao, Changxiang</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Mei, Zhipeng</creatorcontrib><creatorcontrib>Wu, Weizhen</creatorcontrib><creatorcontrib>Lu, Junyi</creatorcontrib><creatorcontrib>Zheng, Zhen</creatorcontrib><creatorcontrib>Tian, Yanqing</creatorcontrib><title>Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Large-scale industrialization of flexible printed electronics will thrive on advanced functional conductive pastes with excellent properties such as high electrical conductivity and mechanical stability. Herein, we develop an effective method to simultaneously decrease the electrical resistivity and improve the mechanical stability of silver-resin-based conductors by adding a small amount of nanostructured polyaniline (PANI). PANI nanomaterials for improving the properties of conductive composites were synthesized by a facile and repeatable chemical oxidative polymerization method and characterized. Significant improvements in electrical performance were observed. For example, for the 60 wt% silver-filled flexible conductors, the addition of 0.5 wt% PANIs reduces their electrical resistivity to one-thirtieth (from 1253.1 × 10 −5 Ω cm to 37.1 × 10 −5 Ω cm). After adding 0.5 wt% PANIs, the bending stability (Δ R / R 0 ) was also greatly improved from 92% to 2.3% (about 1/40th). Meanwhile, elastic conductors showed a much better performance in resistance stability and fatigue life (5 times longer than before) during stretching cycles after the addition of PANIs. A bendable printed circuit and a printed tensile resistive sensor were fabricated using the above PANIs to enhance conductive composites, which proved their potential applications in flexible printed circuits, stretchable pressure sensors, and e-skin or other fields.</description><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Conductors</subject><subject>Electrical resistivity</subject><subject>Fatigue life</subject><subject>Nanomaterials</subject><subject>Organic chemistry</subject><subject>Pastes</subject><subject>Polyanilines</subject><subject>Pressure sensors</subject><subject>Printed circuits</subject><subject>Stability</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWGovfoKAN2E12Wyy2aMs1j8UvNTzks1O2pRtsiap2G9viqJzmYF583vMQ-iakjtKWHPfynVLOGvo6xmalYSTouasOv-bS3GJFjHuSC5JhRTNDKWl6oPVKlnvsDd4azdbPEEwPuyV04CnYF2CAZsRvmw_AtbeDQedfIi4P-LBT9ZtTpeTH4_K2dE6wE45v1cJglVjxBngcbTjJwQ8qZjgCl2YvIDFb5-j9-Xjun0uVm9PL-3DqtBlI1Ix9EIxQ0sx8Ib0Ja15T2rQpampViXIyoBkVQ1c0kYqImEYjCGKawlUGi7YHN38cKfgPw4QU7fzh-CyZZdpFWG0Jiyrbn9UOvgYA5gu_7xX4dhR0p2C7f6DZd94B20e</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wen, Jiayue</creator><creator>Tian, Yanhong</creator><creator>Hao, Changxiang</creator><creator>Wang, Shang</creator><creator>Mei, Zhipeng</creator><creator>Wu, Weizhen</creator><creator>Lu, Junyi</creator><creator>Zheng, Zhen</creator><creator>Tian, Yanqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1441-2431</orcidid><orcidid>https://orcid.org/0000-0002-3427-649X</orcidid></search><sort><creationdate>2019</creationdate><title>Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste</title><author>Wen, Jiayue ; Tian, Yanhong ; Hao, Changxiang ; Wang, Shang ; Mei, Zhipeng ; Wu, Weizhen ; Lu, Junyi ; Zheng, Zhen ; Tian, Yanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-db6a3f126d590b2175b07ec2f71ca2e84fe8347e58198a08eddff0a5c8e18f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Conductors</topic><topic>Electrical resistivity</topic><topic>Fatigue life</topic><topic>Nanomaterials</topic><topic>Organic chemistry</topic><topic>Pastes</topic><topic>Polyanilines</topic><topic>Pressure sensors</topic><topic>Printed circuits</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Jiayue</creatorcontrib><creatorcontrib>Tian, Yanhong</creatorcontrib><creatorcontrib>Hao, Changxiang</creatorcontrib><creatorcontrib>Wang, Shang</creatorcontrib><creatorcontrib>Mei, Zhipeng</creatorcontrib><creatorcontrib>Wu, Weizhen</creatorcontrib><creatorcontrib>Lu, Junyi</creatorcontrib><creatorcontrib>Zheng, Zhen</creatorcontrib><creatorcontrib>Tian, Yanqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Jiayue</au><au>Tian, Yanhong</au><au>Hao, Changxiang</au><au>Wang, Shang</au><au>Mei, Zhipeng</au><au>Wu, Weizhen</au><au>Lu, Junyi</au><au>Zheng, Zhen</au><au>Tian, Yanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>5</issue><spage>1188</spage><epage>1197</epage><pages>1188-1197</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Large-scale industrialization of flexible printed electronics will thrive on advanced functional conductive pastes with excellent properties such as high electrical conductivity and mechanical stability. Herein, we develop an effective method to simultaneously decrease the electrical resistivity and improve the mechanical stability of silver-resin-based conductors by adding a small amount of nanostructured polyaniline (PANI). PANI nanomaterials for improving the properties of conductive composites were synthesized by a facile and repeatable chemical oxidative polymerization method and characterized. Significant improvements in electrical performance were observed. For example, for the 60 wt% silver-filled flexible conductors, the addition of 0.5 wt% PANIs reduces their electrical resistivity to one-thirtieth (from 1253.1 × 10 −5 Ω cm to 37.1 × 10 −5 Ω cm). After adding 0.5 wt% PANIs, the bending stability (Δ R / R 0 ) was also greatly improved from 92% to 2.3% (about 1/40th). Meanwhile, elastic conductors showed a much better performance in resistance stability and fatigue life (5 times longer than before) during stretching cycles after the addition of PANIs. A bendable printed circuit and a printed tensile resistive sensor were fabricated using the above PANIs to enhance conductive composites, which proved their potential applications in flexible printed circuits, stretchable pressure sensors, and e-skin or other fields.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TC05391J</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1441-2431</orcidid><orcidid>https://orcid.org/0000-0002-3427-649X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2019, Vol.7 (5), p.1188-1197
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2174031703
source Royal Society Of Chemistry Journals 2008-
subjects Chemical synthesis
Composite materials
Conductors
Electrical resistivity
Fatigue life
Nanomaterials
Organic chemistry
Pastes
Polyanilines
Pressure sensors
Printed circuits
Stability
title Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20high%20performance%20printed%20flexible%20conductors%20by%20doping%20of%20polyaniline%20nanomaterials%20into%20silver%20paste&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Wen,%20Jiayue&rft.date=2019&rft.volume=7&rft.issue=5&rft.spage=1188&rft.epage=1197&rft.pages=1188-1197&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C8TC05391J&rft_dat=%3Cproquest_cross%3E2174031703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174031703&rft_id=info:pmid/&rfr_iscdi=true