Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo
•Predicted gas transport properties using an integrated kinetic computational framework.•Analyzed the effect of material anisotropy on the permeability and pore-scale velocity.•Pore-diameter computed in this work agreed well with tomography derived data.•Determined representative elementary volume (...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2019-03, Vol.130, p.923-937 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 937 |
---|---|
container_issue | |
container_start_page | 923 |
container_title | International journal of heat and mass transfer |
container_volume | 130 |
creator | Jambunathan, Revathi Levin, Deborah A. Borner, Arnaud Ferguson, Joseph C. Panerai, Francesco |
description | •Predicted gas transport properties using an integrated kinetic computational framework.•Analyzed the effect of material anisotropy on the permeability and pore-scale velocity.•Pore-diameter computed in this work agreed well with tomography derived data.•Determined representative elementary volume (REV) required for material characterization studies.
We use the Cuda-based Hybrid Approach for Octree Simulations (CHAOS) DSMC solver to predict gas transport coefficients of Morgan felt and FiberForm TPS materials with sample size of (1×1×1) mm3. The detailed velocity flow-field of the pressure-driven flow through these materials is studied to compare the effect of material microstructures on gas transport. It is found that the effective flow path traversed by the gas is more circuitous and longer for FiberForm compared to the more porous felt. The obstruction offered by the material and the circuitous flow path is quantified by the Klinkenberg-derived permeability and hydraulic tortuosity factor, which are key material properties that govern the momentum transport through porous media. We also compute the hydraulic pore diameter of these materials and find that the through-thickness and in-plane pore diameter is equal to 86.94 and 98.7 μm for felt and 36.25 and 60.9 μm for Fiberform, which is within 5–6% of the average pore-size obtained from the tomography images. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2018.11.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2173852637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018326619</els_id><sourcerecordid>2173852637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-5ab17946a08aea5ad866921b72bd4f43289dfee9ff32a99d9125ad3b55a962183</originalsourceid><addsrcrecordid>eNqNkE9v3CAQxVHVSN0m_Q5IvfRih8E2NrdW2-afEiVSkjPCNuxirY074Ej59sHZ3nrJCZh5vJn3I-QHsBwYiPMhd8Pe6DjqECLqKViDOWfQ5AA5Y-IT2UBTy4xDIz-TDWNQZ7IA9oV8DWFYn6wUG_L6gKZ3XXR-ot7SnQ703W32GOmMfjYYnUnFPfplt6fWtekSaKexTV9mNNbjSEfXoU97LF1cMMmX4KYd_e3QdJE-unE56PcRd36Khm41HvwZObH6EMy3f-cpeb7487S9ym7vL6-3v26zrmR1zCrdQi1LoVmjja503wghObQ1b_vSlgVvZG-NkdYWXEvZS-BJVLRVpaVI4YtT8v3om9L8XUyIavALTmmk4lAXTcVFUSfVz6NqzRFSKjWjGzW-KmBqBa4G9T9wtQJXACoBTxY3RwuT0ry41A2dM1OX-K4YVO_dx83eAKEPmdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2173852637</pqid></control><display><type>article</type><title>Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jambunathan, Revathi ; Levin, Deborah A. ; Borner, Arnaud ; Ferguson, Joseph C. ; Panerai, Francesco</creator><creatorcontrib>Jambunathan, Revathi ; Levin, Deborah A. ; Borner, Arnaud ; Ferguson, Joseph C. ; Panerai, Francesco</creatorcontrib><description>•Predicted gas transport properties using an integrated kinetic computational framework.•Analyzed the effect of material anisotropy on the permeability and pore-scale velocity.•Pore-diameter computed in this work agreed well with tomography derived data.•Determined representative elementary volume (REV) required for material characterization studies.
We use the Cuda-based Hybrid Approach for Octree Simulations (CHAOS) DSMC solver to predict gas transport coefficients of Morgan felt and FiberForm TPS materials with sample size of (1×1×1) mm3. The detailed velocity flow-field of the pressure-driven flow through these materials is studied to compare the effect of material microstructures on gas transport. It is found that the effective flow path traversed by the gas is more circuitous and longer for FiberForm compared to the more porous felt. The obstruction offered by the material and the circuitous flow path is quantified by the Klinkenberg-derived permeability and hydraulic tortuosity factor, which are key material properties that govern the momentum transport through porous media. We also compute the hydraulic pore diameter of these materials and find that the through-thickness and in-plane pore diameter is equal to 86.94 and 98.7 μm for felt and 36.25 and 60.9 μm for Fiberform, which is within 5–6% of the average pore-size obtained from the tomography images.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.11.006</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Direct simulation Monte Carlo method ; DSMC ; Errors ; Gas transport ; Heat transfer ; Hydraulic tortuosity ; Klinkenberg permeability ; Material properties ; Microstructure ; Monte Carlo simulation ; Octrees ; Porous fibrous microstructures ; Porous media ; Predictions ; Tortuosity ; Transport properties</subject><ispartof>International journal of heat and mass transfer, 2019-03, Vol.130, p.923-937</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-5ab17946a08aea5ad866921b72bd4f43289dfee9ff32a99d9125ad3b55a962183</citedby><cites>FETCH-LOGICAL-c407t-5ab17946a08aea5ad866921b72bd4f43289dfee9ff32a99d9125ad3b55a962183</cites><orcidid>0000-0002-8378-8416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.11.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jambunathan, Revathi</creatorcontrib><creatorcontrib>Levin, Deborah A.</creatorcontrib><creatorcontrib>Borner, Arnaud</creatorcontrib><creatorcontrib>Ferguson, Joseph C.</creatorcontrib><creatorcontrib>Panerai, Francesco</creatorcontrib><title>Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo</title><title>International journal of heat and mass transfer</title><description>•Predicted gas transport properties using an integrated kinetic computational framework.•Analyzed the effect of material anisotropy on the permeability and pore-scale velocity.•Pore-diameter computed in this work agreed well with tomography derived data.•Determined representative elementary volume (REV) required for material characterization studies.
We use the Cuda-based Hybrid Approach for Octree Simulations (CHAOS) DSMC solver to predict gas transport coefficients of Morgan felt and FiberForm TPS materials with sample size of (1×1×1) mm3. The detailed velocity flow-field of the pressure-driven flow through these materials is studied to compare the effect of material microstructures on gas transport. It is found that the effective flow path traversed by the gas is more circuitous and longer for FiberForm compared to the more porous felt. The obstruction offered by the material and the circuitous flow path is quantified by the Klinkenberg-derived permeability and hydraulic tortuosity factor, which are key material properties that govern the momentum transport through porous media. We also compute the hydraulic pore diameter of these materials and find that the through-thickness and in-plane pore diameter is equal to 86.94 and 98.7 μm for felt and 36.25 and 60.9 μm for Fiberform, which is within 5–6% of the average pore-size obtained from the tomography images.</description><subject>Computer simulation</subject><subject>Direct simulation Monte Carlo method</subject><subject>DSMC</subject><subject>Errors</subject><subject>Gas transport</subject><subject>Heat transfer</subject><subject>Hydraulic tortuosity</subject><subject>Klinkenberg permeability</subject><subject>Material properties</subject><subject>Microstructure</subject><subject>Monte Carlo simulation</subject><subject>Octrees</subject><subject>Porous fibrous microstructures</subject><subject>Porous media</subject><subject>Predictions</subject><subject>Tortuosity</subject><subject>Transport properties</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v3CAQxVHVSN0m_Q5IvfRih8E2NrdW2-afEiVSkjPCNuxirY074Ej59sHZ3nrJCZh5vJn3I-QHsBwYiPMhd8Pe6DjqECLqKViDOWfQ5AA5Y-IT2UBTy4xDIz-TDWNQZ7IA9oV8DWFYn6wUG_L6gKZ3XXR-ot7SnQ703W32GOmMfjYYnUnFPfplt6fWtekSaKexTV9mNNbjSEfXoU97LF1cMMmX4KYd_e3QdJE-unE56PcRd36Khm41HvwZObH6EMy3f-cpeb7487S9ym7vL6-3v26zrmR1zCrdQi1LoVmjja503wghObQ1b_vSlgVvZG-NkdYWXEvZS-BJVLRVpaVI4YtT8v3om9L8XUyIavALTmmk4lAXTcVFUSfVz6NqzRFSKjWjGzW-KmBqBa4G9T9wtQJXACoBTxY3RwuT0ry41A2dM1OX-K4YVO_dx83eAKEPmdQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Jambunathan, Revathi</creator><creator>Levin, Deborah A.</creator><creator>Borner, Arnaud</creator><creator>Ferguson, Joseph C.</creator><creator>Panerai, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8378-8416</orcidid></search><sort><creationdate>20190301</creationdate><title>Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo</title><author>Jambunathan, Revathi ; Levin, Deborah A. ; Borner, Arnaud ; Ferguson, Joseph C. ; Panerai, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-5ab17946a08aea5ad866921b72bd4f43289dfee9ff32a99d9125ad3b55a962183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Direct simulation Monte Carlo method</topic><topic>DSMC</topic><topic>Errors</topic><topic>Gas transport</topic><topic>Heat transfer</topic><topic>Hydraulic tortuosity</topic><topic>Klinkenberg permeability</topic><topic>Material properties</topic><topic>Microstructure</topic><topic>Monte Carlo simulation</topic><topic>Octrees</topic><topic>Porous fibrous microstructures</topic><topic>Porous media</topic><topic>Predictions</topic><topic>Tortuosity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jambunathan, Revathi</creatorcontrib><creatorcontrib>Levin, Deborah A.</creatorcontrib><creatorcontrib>Borner, Arnaud</creatorcontrib><creatorcontrib>Ferguson, Joseph C.</creatorcontrib><creatorcontrib>Panerai, Francesco</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jambunathan, Revathi</au><au>Levin, Deborah A.</au><au>Borner, Arnaud</au><au>Ferguson, Joseph C.</au><au>Panerai, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>130</volume><spage>923</spage><epage>937</epage><pages>923-937</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Predicted gas transport properties using an integrated kinetic computational framework.•Analyzed the effect of material anisotropy on the permeability and pore-scale velocity.•Pore-diameter computed in this work agreed well with tomography derived data.•Determined representative elementary volume (REV) required for material characterization studies.
We use the Cuda-based Hybrid Approach for Octree Simulations (CHAOS) DSMC solver to predict gas transport coefficients of Morgan felt and FiberForm TPS materials with sample size of (1×1×1) mm3. The detailed velocity flow-field of the pressure-driven flow through these materials is studied to compare the effect of material microstructures on gas transport. It is found that the effective flow path traversed by the gas is more circuitous and longer for FiberForm compared to the more porous felt. The obstruction offered by the material and the circuitous flow path is quantified by the Klinkenberg-derived permeability and hydraulic tortuosity factor, which are key material properties that govern the momentum transport through porous media. We also compute the hydraulic pore diameter of these materials and find that the through-thickness and in-plane pore diameter is equal to 86.94 and 98.7 μm for felt and 36.25 and 60.9 μm for Fiberform, which is within 5–6% of the average pore-size obtained from the tomography images.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.11.006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8378-8416</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2019-03, Vol.130, p.923-937 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2173852637 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computer simulation Direct simulation Monte Carlo method DSMC Errors Gas transport Heat transfer Hydraulic tortuosity Klinkenberg permeability Material properties Microstructure Monte Carlo simulation Octrees Porous fibrous microstructures Porous media Predictions Tortuosity Transport properties |
title | Prediction of gas transport properties through fibrous carbon preform microstructures using Direct Simulation Monte Carlo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20gas%20transport%20properties%20through%20fibrous%20carbon%20preform%20microstructures%20using%20Direct%20Simulation%20Monte%20Carlo&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Jambunathan,%20Revathi&rft.date=2019-03-01&rft.volume=130&rft.spage=923&rft.epage=937&rft.pages=923-937&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.11.006&rft_dat=%3Cproquest_cross%3E2173852637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2173852637&rft_id=info:pmid/&rft_els_id=S0017931018326619&rfr_iscdi=true |